| AUTHOR | Kang, Kelly H. |
| :---: | :---: |
| TITLE | Characteristics of Doctoral Scientists and Engineers in the United States: 1997. Detailed Statistical Tables. |
| INSTITUTION | National Science Foundation, Arlington, VA. Div. of Science Resources Studies. |
| REPORT NO | NSF-00-308 |
| PUB DATE | 1999-11-00 |
| NOTE | 178p.; For 1995 report, see ED 414203. |
| AVAILABLE FROM | National Science Foundation, Div. of Science Resources Studies, 4201 Wilson Blvd., Arlington, VA 22230. Tel: 703-292-5111. For full text: <br> http://nsf.gov/cgi-bin/getpub?nsf00308. |
| PUB TYPE | Numerical/Quantitative Data (110) -- Reports - Research (143) -- Tests/Questionnaires (160) |
| EDRS PRICE | MF01/PC08 Plus Postage. |
| DESCRIPTORS | Demography; *Doctoral Degrees; Employment Patterns; <br> Engineering Education; *Engineers; Higher Education; <br> Minority Groups; Population Trends; Postdoctoral Education; <br> Professional Development; Science Education; *Scientists; <br> Tables (Data) |
| IDENTIFIERS | National Science Foundation |

## ABSTRACT

This report presents data on the demographic and emplovment characteristics of the nation's doctoral scientists and engineers. Data were developed as part of the Longitudinal Doctorate Project. Current information on the supply and utilization of doctoral personnel in science and engineering reflects the results of the 1997 Survey of Doctorate Recipients (SDR), the 13 th in a biennial serjes. The population of the 1997 survey included persons under the age of 76 who hold doctorates in science or engineering from U.S. institutions. This report provides information on the number of scientists and engineers by demographic characteristics such as citizenship, place of birth, field of degree; and employment-related characteristics such as occupation, sector of employment, median salary, and various labor force rates. Some tables in this report include estimates for doctoral scientists and engineers employed in four-year colleges and universities. Detailed statistical tables, technical notes, and the survey instrument are also included. The Technical Notes section contains information on survey methodology, coverage, concepts, definitions, and sampling errors. (WRM)

## Characteristics of Doctoral Scientists and Engineers in the United States: 1997



# Characteristics of Doctoral Scientists and Engineers in the United States: 1997 

Detailed Statistical Tables

Kelly H. Kang, Project Officer

Division of Science Resources Studies
Directorate for Social, Behavioral, and Economic Sciences


Directorate for Social, Behavioral, and Economic Sciences<br>Bennett I. Bertenthal<br>Director<br>\section*{Division of Science Resources Studies}<br>Mary J. Frase<br>Acting Division Director<br>Ronald S. Fecso<br>Chief Statistician

## Human Resources Statistics Program

Mary J. Golladay
Program Director

## Division of Science Resources Studies

The Division of Science Resources Studies ( SRS ) fulfills the legislative mandate of the National Science Foundation Act to ...
provide a central clearinghouse for the collection, interpretation, and analysis of data on scientific and engineering resources and to provide a source of information for policy formulation by other agencies of the Federal Government...

To carry out this mandate, SRS designs, supports, and directs periodic surveys as well as a variety of other data collections and research projects. These surveys yield the materials for SRS staff to compile, analyze, and disseminate quantitative information about domestic and international resources devoted to science, engineering, and technology.

If you have any comments or suggestions about this or any other SRS product or report, we would like to hear from you. Please direct your comments to:

National Science Foundation
Division of Science Resources Studies
4201 Wilson Blvd., Suite 965
Arlington, VA 22230
Telephone: (703) 306-1780
Fax: (703) 306-0510
email: srsweb@nsf.gov

## Suggested Citation <br> National Science Foundation, Division of Science Resources Studies, Characteristics of Doctoral Scientists and Engineers in the United States: 199.7, NSF 00-308, Project Officer, Kelly H. Kang (Arlington, VA 1999).

November 1999

[^0]
## Acknowledgments

This publication was prepared by Kelly H. Kang, Project Officer for the Survey of Doctorate Recipients, Science and Engineering Human Resources Statistics Program (HRS) of the National Science Foundation's Division of Science Resources Studies (SRS), under the overall direction of Mary J. Golladay, Program Director, HRS and Mary E. Frase, Acting Division Director, SRS. Mary Collins of Westat provided oversight in the production
and a detail review of the tables. Anne Houghton, Julia Harriston, and Tanya Gore of SRS provided editorial assistance.

SRS is grateful to Patricia Green, Natalie Suter, Rachel Harter, and the project staff at the National Opinion Research Center (NORC) for having conducted the survey in 1997.

## Contents

Section Page
I. General Notes ..... 1
II. Detailed Statistical Tables ..... 3
Appendixes
A. Technical Notes ..... 103
B. Degree Field List ..... 111
C. Occupation Field List ..... 121
D. Generalized Variance Function (GVF) Tables ..... 129
E. Survey Questionnaire ..... 135
Getting Information on the NSF World Wide Web
Order Form

## Section I. General Notes

This report presents data on the demographic and employment characteristics of the nation's doctoral scientists and engineers. The data were developed as part of the Doctorate Data Project. ${ }^{1}$ The goal of the 1997 Survey of Doctorate Recipients (SDR) is to provide policymakers and researchers with high-quality data and analyses for making informed decisions related to the educational achievement and career patterns of the nation's doctoral scientists and engineers. Current information on the supply and utilization of doctoral personnel in science and engineering reflects the results of SDR, the thirteenth in a biennial series. The population of the 1997 survey includes persons under the age of 76 who hold doctorates in science or engineering from U.S. institutions.

The SDR is a longitudinal demographic survey of science and engineering doctorate holders conducted biennially for the National Science Foundation (NSF) and for other Federal agencies (current and past sponsors included NIH and DOE) since 1973. Several changes have been made to the 1997 tables and are noted in the Technical Notes, included in the back of this report. (See appendix
A.) The Technical Notes section also contains information on survey methodology, coverage, concepts, definitions, and sampling errors.

The detailed statistical tables in this report provide information on the number of scientists and engineers by demographic characteristic such as citizenship, place of birth, field of degree, and employment-related characteristic such as occupation, sector of employment, median salary, and various labor force rates.

For further information on the survey or the availability of data on S\&E doctorates, please go to http:// www.nsf.gov/sbe/srs/cdse/start.htm or contact -

Kelly H. Kang
Division of Science Resources Studies
National Science Foundation, Room 965
4201 Wilson Boulevard
Arlington, VA. 22230
Telephone:(703)306-1776, ext. 6943
E-mail:kkang@nsf.gov

[^1]
## Section II. Detailed Statistical Tables

## Table

## Employment Status Tables on All Doctoral Scientists and Engineers:

1. by field of doctorate and employment status: 1997 ..... 7
2. by occupation and employment status: 1997 ..... 8
3. by broad field of doctorate, employment status, and sex: 1997 ..... 9
4. by broad occupation, employment status, and sex: 1997 ..... 11
5. by broad field of doctorate, employment status, and race/ethnicity: 1997 ..... 13
6. by broad occupation, employment status, and race/ethnicity: 1997 ..... 15
7. Selected employment characteristics of doctoral scientists and engineers, by field of doctorate: 1997 ..... 17
8. Selected employment characteristics of doctoral scientists and engineers, by occupation: 1997 ..... 18
Demographic Tables on All Doctoral Scientists and Engineers:
9. by field of doctorate and sex: 1997 ..... 19
10. by occupation and sex: 1997 ..... 20
11. by field of doctorate and race/ethnicity: 1997 ..... 21
12. by occupation and race/ethnicity: 1997 ..... 22
13. by field of doctorate and citizenship status: 1997 ..... 24
14. by occupation and citizenship status: 1997 ..... 25
15. by field of doctorate and age: 1997 ..... 27
16. by occupation and age: 1997 ..... 28
Basic Tables on all Employed Doctoral Scientists and Engineers:
17. by field of doctorate and sector of employment: 1997 ..... 30
18. by occupation and sector of employment: 1997 ..... 31
19. working in universities and 4-year colleges by broad field of doctorate, sex, and academic rank: 1997 ..... 33
20. working in universities and 4-year colleges by broad field of doctorate, sex, and tenure status: 1997 ..... 34
21. working in universities and 4-year colleges by broad field of doctorate, primary work activity, and secondary work activity: 1997 ..... 35
22. by field of doctorate and primary work activity: 1997 ..... 37
23. by occupation and primary work activity: 1997 ..... 38
24. by employer location and broad field of doctorate: 1997 ..... 40
25. by employer location and broad occupation: 1997 ..... 42
Demographic Tables on all Employed Doctoral Scientists and Engineers:
26. by field of doctorate, race/ethnicity, and sex: 1997 ..... 44
27. by occupation, race/ethnicity, and sex: 1997 ..... 46
28. by demographic characteristic and broad field of doctorate: 1997 ..... 48
29. by demographic characteristic and broad occupation: 1997 ..... 49
30. by demographic characteristic and citizenship status: 1997 ..... 50
31. by demographic characteristic and sector of employment: 1997 ..... 51
32. by demographic characteristic and primary work activity: 1997 ..... 53
33. by demographic characteristic, race/ethnicity, and sex: 1997 ..... 55

## Employment-related Characteristics on all Employed Doctoral Scientists and Engineers:

34. by employment-related characteristic, race/ethnicity, and sex: 1997 ..... 57
35. by employment-related characteristic and sector of employment: 1997 ..... 59
36. by employment-related characteristic and primary work activity: 1997 ..... 61
37. by field of doctorate and broad occupation: 1997 ..... 63
Median Annual Salaries of all Employed Doctoral Scientists and Engineers:
38. by field of doctorate, race/ethnicity, and sex: 1997 ..... 65
39. by occupation, race/ethnicity, and sex: 1997 ..... 67
40. by field of doctorate and sector of employment: 1997 ..... 69
41. by occupation and sector of employment: 1997 ..... 70
42. by field of doctorate and primary work activity: 1997 ..... 71
43. by occupation and primary work activity: 1997 ..... 72
44. by sector of employment, broad field of doctorate, and sex: 1997 ..... 73
45. by sector of employment, broad occupation, and sex: 1997 ..... 75
46. by sector of employment, broad field of doctorate, and race/ethnicity: 1997 ..... 77
47. by sector of employment, broad occupation, and race/ethnicity: 1997 ..... 79
48. by demographic characteristic, race/ethnicity, and sex: 1997 ..... 81
49. by demographic characteristic and citizenship status: 1997 ..... 83
50. by demographic characteristic and sector of employment: 1997 ..... 85
51. by demographic characteristic and primary work activity: 1997 ..... 87
52. by demographic characteristic and broad field of doctorate: 1997 ..... 89
53. by demographic characteristic and broad occupation: 1997 ..... 91
54. by employment-related characteristic, race/ethnicity, and sex: 1997 ..... 93
55. by employment-related characteristic and citizenship status: 1997 ..... 95
56. by employment-related characteristic and sector of employment: 1997 ..... 96
57. by field of doctorate and year of doctorate: 1997 ..... 97
58. by employer location and broad field of doctorate: 1997 ..... 98
59. by employer location and broad occupation: 1997 ..... 100

Table 1. Doctoral scientists and engineers, by field of doctorate and employment status: 1997

| Field of doctorate | Total | Employed |  |  |  | Unemployed/ seeking | Retired | Not empid/ not seeking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Full-time | Part-time | Postdoc appt |  |  |  |
| Total................................................................ | 582,080 | 518,440 | 453,350 | 39;450 | 25,640 | 6,390 | 45,340 | 11,910 |
| Sciences....................................................... | 484,600 | 429,820 | 370,710 | 35,720 | 23,390 | 5,400 | 38,680 | 10,700 |
| Computer and mathematical sciences.................. | 35,060 | 32,400 | 29,980 | 1,770 | 650 | 190 | 2,070 | 400 |
| Computerfinformation sciences...................... | 8,080 | 8,000 | 7,640 | 220 | 150 | S | S | 60 |
| Mathematical sciences........................ | 26,980 | 24,400 | 22,340 | 1,560 | 500 | 170 | 2,070 | 340 |
| Biological and agricutural sciences....................... | 142,100 | 124,600 | 102,880 | 7,840 | 13,880 | 1,890 | 11,760 | 3,840 |
| Agriculturalfood sciences.................................. | 18,530 | 15,670 | 14,090 | 1,000 | 580 | 280 | 2,300 | 280 |
| Biological sciences.. | 118,580 | 104,630 | 84,830 | 6,610 | 13,200 | 1,480 | 8,930 | 3,540 |
| Environmental life sciences............................... | 4,990 | 4,300 | 3,960 | 230 | 100 | 130 | 540 | S |
| Health sciences....... | 18,940 | 17,180 | 15,340 | 1,270 | 570 | 140 | 1,140 | 480 |
| Physical and related sciences............................. | 120,960 | 105,250 | 93,510 | 6,690 | 5,050 | 1,730 | 11,720 | 2,270 |
| Chemistry except biochemistry........................... | 63,730 | 54,220 | 48,720 | 3,300 | 2,200 | 1,130 | 7,130 | 1,250 |
| Earth/atmos/ocean sciences.............................. | 17,240 | 15,110 | 13,260 | 1,080 | 770 | 250 | 1,440 | 440 |
| Physics and astronomy .................................... | 39,990 | 35,920 | 31,520 | 2,320 | 2,080 | 350 | 3,150 | 570 |
| Social sciences............................................... | 80,690 | 71,070 | 64,090 | 6,000 | 980 | 920 | 7,200 | 1,500 |
| Economics................................. | 23,140 | 20,080 | 18,720 | 1,250 | 110 | 170 | 2,540 | 350 |
| Political and related sciences..... | 17,700 | 15,820 | 14,340 | 1,210 | 260 | 260 | 1,440 | 190 |
| Sociology.... | 15,020 | 13,230 | 11,700 | 1,410 | 120 | 90 | 1,360 | 340 |
| Other social sciences.................. | 24,840 | 21,940 | 19,320 | 2,140 | 490 | 400 | 1,870 | 630 |
| Psychology.................................................. | 86,850 | 79,320 | 64,910 | 12,150 | 2,260 | 530 | 4,790 | 2,220 |
| Engineering........................................... | 97,480 | 88,620 | 82,640 | 3,730 | 2,250 | 990 | 6,660 | 1,200 |
| Aerospace/aeronautical engineering................... | 4,220 | 3,720 | 3,440 | 100 | 180 | S | 410 | 80 |
| Chemical engineering...................................... | 14,010 | 12,280 | 11,320 | 630 | 330 | 250 | 1,260 | 230 |
| Civilarchitectural engineering............................ | 8,620 | 8,190 | 7,680 | 340 | 160 | 80 | 230 | 120 |
| Electricalcomputer engineering..... | 26,010 | 23,750 | 22,590 | 760 | 400 | 170 | 1,830 | 250 |
| Materials/metallurgical engineering..................... | 9,370 | 8,510 | 7,650 | 480 | 380 | 80 | 590 | 190 |
| Mechanical engineering... | 11,950 | 11,080 | 10,420 | 450 | 210 | 100 | 680 | 90 |
| Other engineering.......................................... | 23,310 | 21,100 | 19,550 | 960 | 590 | 300 | 1,670 | 250 |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Occupation* | Total | Employed |  |  |  | Unemployed/ seeking | Retired | Not empl'd/ not seeking |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Full-time | Par-time | Postdoc appt |  |  |  |
| Total..... | 582,080 | 518,440 | 453,350 | 39,450 | 25,640 | 6,390 | 45,340 | 11,910 |
| Scientists.. | 358,520 | 319,130 | 270,950 | 25,920 | 22,270 | 3,810 | 28,270 | 7310 |
| Computer and mathematical scientists.. | 49,460 | 45,350 | 41,920 | 2,570 | $\begin{array}{r}860 \\ \hline\end{array}$ | +540 | 28,270 2,900 | 7,310 680 |
| Computerlinformation scientists.. | 22,200 | 20,820 | 19,530 | 970 | 320 | 280 | 800 | 300 |
| Mathematical scientists.. | 6,670 | 5,920 | 5,360 | 410 | 150 | 110 | 400 | 250 |
| Postsecondary teachers, computer and mathematical sciences. $\qquad$ | 20,600 | 18,610 | 17,030 | 1,190 | 390 | 150 | 1,710 | 130 |
| Life and related scientists.... | 111,640 | 97,550 | 77,770 | 5,030 | 14,750 | 1,500 | 9,510 | 3,080 |
| Agricultural scientists... | 11,570 | 9,170 | 7,930 | 640 | 600 | 190 | 1,900 | 310 |
| Biological scientists....................... | 62,990 | 55,590 | 39,170 | 2,600 | 13,820 | 1,180 | 4,000 | 2,230 |
| Forestry and conservation scientists... | 1,480 | 1,230 | 1,170 | - S | S | S | - 250 | S |
| Postsecondary teachers, life and related sciences... | 35,600 | 1,230 | 1,170 | S | S | S | 250 | S |
| Physical and related scientists. | 82,600 | 72,240 | 63,990 | 4,010 | 4,250 | 1,020 | 8,060 | 1,280 |
| Chemists, except biochemistry. | 28,660 | 24,560 | 21,780 | 1,280 | 1,500 | 490 | 3,030 | 580 |
| Earth scientists. | 10,160 | 8,830 | 7,540 | 480 | 810 | 130 | 1,030 | 160 |
| Physics and astronomers... | 14,890 | 13,280 | 10,920 | 670 | 1,690 | 130 | 1,030 | 180 |
| Other physical scientists... | 1,590 | 1,280 | 1,210 | S | 60 | 130 | 1,290 270 | 180 |
| Postsecondary teachers, physical and related sciences.. | 27,300 | 24,290 | 22,540 | 1,560 | 190 | 270 | 2,430 | 310 |
| Social scientists... | 49,090 | 43,370 | 39,160 | 3,530 | 680 | 430 | 4.720 | 580 |
| Economists... | 7,480 | 6,640 | 6,050 | $\begin{array}{r}530 \\ \hline\end{array}$ | 60 | 100 | 4,720 650 | 580 |
| Political scientisis... | 1,240 | 870 | 640 | 80 | 150 | 80 | 300 | 0 |
| Sociologists and anthropologists.. | 4,060 | 3,310 | 2,560 | 480 | 270 | S | 510 | . 210 |
| S\&T historians and other social scientists.. | 2,140 | 1,840 | 1,710 | 110 | S | S | 200 | 270 |
| Postsecondary teachers, social and related sciences. | 34,170 | 30,710 | 28,210 | 2,330 | 180 | 190 | 3,070 | 200 |
| Psychologists.. | 65,720 | 60,630 | 48,110 | 10,790 | 1,740 | 320 | 3,080 | 1700 |
| Psychologists.. | 48,590 | 45,120 | 33,730 | 9,750 | 1,650 | 230 | 1,820 | 1,420 |
| Postsecondary teachers, psychology... | 17,140 | 15,510 | 14,380 | 1,040 | 90 | 90 | 1,260 | +280 |
| Engineers... | 77,220 | 69,740 | 64,880 | 2,910 | 1,940 | 720 | 5,940 | 820 |
| Aerospace/aeronautical engineers. | 4,690 | 3,990 | 3,770 | 110 | 110 | S | 560 | 100 |
| Chemical engineers.... | 7,670 | 6,730 | 6,110 | 330 | 290 | 190 | 690 | 60 |
| Civil and architectural engineers. | 3,510 | 3,350 | '3,070 | 180 | 110 | S | 130 | S |
| Electric and related engineers. | 14,850 | 13,500 | 12,980 | 400 | 120 | 70 | 1,100 | 200 |
| Industrial engineers.... | 1,260 | 1,220 | 1,120 | 100 | S | S | - S | S |
| Mechanical engineers. | 8,490 | 7,820 | 7,370 | 270 | 190 | 70 | 540 | S |
| Other engineers.. | 17,910 | 16,000 | 14,110 | 1,080 | . 820 | 200 | 1,460 | 240 |
| Posisecondary teachers, engineering... | 18,850 | 17,140 | 16,360 | 460 | 310 | 80 | 1,460 | 180 |
| Non-S\&E occupations. | 146,340 | 129,570 | 117,520 | 10,610 | 1,430 | 1,870 | 11,130 | 3,780 |
| Managers, administrators, etc. | 78,750 | 71,010 | 67,830 | 2,810 | 370 | 680 | 11,190 | 870 |
| Heath and related occupations.... | 15,760 | 14,440 | 12,220 | 1,540 | 690 | 170 | 830 | 310 |
| Teachers, except S\&E postsecondary teachers.. | 23,7.70 | 20,780 | 18,500 | 2,090 | 180 | 340 | 2,060 | 600 |
| Social services and related occupations.... | 2,400 | 2,020 | 1,760 | 230 | S | S | , 150 | 230 |
| Technologists, etc., | 5,140 | 4,570 | 3,970 | 500 | 90 | 140 | 390 | 23 |
| Sales and marketing occupations... | 6,000 | 5,230 | 4,130 | 1,110 | S | 90 | 380 | 300 |
| Other non-S\&E occupations... | 14,520 | 11,530 | 9,110 | 2,330 | 90 | 440 | 1,130 | 1.430 |

*If the respondent was unemployed, occupation of last job was reported.
NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases)
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 3. Doctoral scientists and enğineers, by broad field of doctorate, employment status, and sex: 1997

Page 1 of 2

| Employment status/field of doctorate | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| All Fields |  |  |  |
| Total. | 582,080 | 449,220 | 132,860 |
| Employed full-time... | 477,900 | 375,810 | 102,100 |
| Employed part-time... | 40,540 | 23,310 | 17,230 |
| Unemployed, seeking.................. | 6,390 | 4,730 | 1,670 |
| Retired.................................... | 45,340 | 40,410 | 4,930 |
| Not employed, not seeking. | 11,910 | 4,970 | 6,930 |
| Sciences |  |  |  |
| Total. | 484,600 | 357,540 | 127,060 |
| Employed full-time.. | 393,100 | 295,760 | 97,340 |
| Employed part-time..................... | 36,720 | 19,920 | 16,800 |
| Unemployed, seeking... | 5,400 | 3,850 | 1,550 |
| Retired. | 38,680 | 33,770 | 4,910 |
| Not employed, not seeking........... | 10,700 | 4,250 | 6,460 |
| Computer and information sciences |  |  |  |
| Total. | 8,080 | 6,700 | 1,390 |
| Employed full-time. | 7,790 | 6,510 | 1,280 |
| Employed part-time.... | 220 | 150 | 70 |
| Unemployed, seeking................. | S | S | S |
| Retired.......... | S | S | S |
| Not employed, not seeking........... | 60 | S | S |
| Mathematical sciences |  |  |  |
| Total. | 26,980 | 23,400 | 3,580 |
| Employed full-time.................. | 22,820 | 20,150 | 2,670 |
| Employed part-time................ | 1,580 | 1,040 | 540 |
| Unemployed, seeking.............. | 170 | 90 | 80 |
| Retired................................ | 2,070 | 1,870 | 200 |
| Not employed, not seeking.......... | 340 | 260 | 90 |
| Biological and agricultural sciences |  |  |  |
| Total. | 142,100 | 105,310 | 36,790 |
| Employed full-time........ | 116,300 | 87,290 | 29,020 |
| Employed part-time................... | 8,300 | 5,120 | 3,180 |
| Unemployed, seeking................. | 1,890 | 1,240 | 650 |
| Retired.... | 11,760 | 10,250 | 1,520 |
| Not employed, not seeking.......... | 3,840 | 1,420 | 2,420 |

See explanatory information and SOURCE at end of table.

Table 3. Doctoral scientists and engineers, by broad field of doctorate, employment status, and sex: 1997

| Page 2 of 2 |  |  |  |
| :---: | :---: | :---: | :---: |
| Employment status/field of doctorate | Total | Male | Female |
| Health sciences |  |  |  |
| Total............................................ | 18,940 | 9,060 | 9,880 |
| Employed full-time. | 15,850 | 7,770 | 8,080 |
| Employed part-time.... | 1,330 | 380 | 950 |
| Unemployed, seeking......... | 140 | 80 | 60 |
| Retired. | 1,140 | 700 | 440 |
| Not employed, not seeking......... | 480 | 130 | 350 |
| Physical and related sciences |  |  |  |
| Total. | 120,960 | 106,560 | 14,410 |
| Employed full-time... | 98,400 | 87,080 | 11,330 |
| Employed part-time..... | 6,850 | 5,600 | 1,250 |
| Unemployed, seeking.................. | 1,730 | 1,470 | 260 |
| Retired... | 11,720 | 11,110 | 610 |
| Not employed, not seeking. | 2,270 | 1,310 | 960 |
| Social sciences |  |  |  |
| Total. | 80,690 | 58,020 | 22,670 |
| Employed full-time...................... | 64,970 | 46,980 | 17,980 |
| Employed part-time..................... | 6,100 | 3,540 | 2,560 |
| Unemployed, seeking....... | 920 | 620 | 300 |
| Retired.. | 7,200 | 6,210 | 990 |
| Not employed, not seeking........... | 1,500 | 660 | 840 |
| Psychology |  |  |  |
| Total. | 86,850 | 48,500 | 38,350 |
| Employed full-time...................... | 66,960 | 39,980 | 26,980 |
| Employed part-time.................... | 12,350 | 4,100 | 8,250 |
| Unemployed, seeking.................. | 530 | 350 | 190 |
| Retired. | 4,790 | 3,640 | 1,150 |
| Not employed, not seeking........... | 2,220 | 440 | 1,780 |
| Engineering |  |  |  |
| Total. | 97,480 | 91,680 | 5,810 |
| Employed full-time...................... | 84,810 | 80,050 | 4,760 |
| Employed part-ime.. | 3,810 | 3,380 | 430 |
| Unemployed, seeking................. | 990 | 870 | 120 |
| Retired.................................... | 6,660 | 6,640 | S |
| Not employed, not seeking........... | 1,200 | 730 | 470 |

NOTE: $\quad$ Numbers are rounded to nearest ten. Details may not add to total because of rounding.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 4. Doctoral scientists and engineers, by broad occupation, employment status, and sex: 1997

| Employment status/occupation* |  |  | Page 1 of |
| :---: | :---: | :---: | :---: |
|  | Total | Male | Female |
| All Occupations <br> Total. <br> Employed full-time $\qquad$ <br> Employed part-time. $\qquad$ <br> Unemployed, seeking $\qquad$ <br> Retired. $\qquad$ <br> Not employed, not seeking. $\qquad$ |  |  |  |
|  | 582,080 | 449,220 | 132,860 |
|  | 477,900 | 375,810 | 102,100 |
|  | 40,540 | 23,310 | 17,230 |
|  | 6,390 | 4,730 | 1,670 |
|  | 45,340 | 40,410 | 4,930 |
|  | 11,910 | 4,970 | 6,930 |
| Scientists |  |  |  |
| Total......................................................... | 358,520 | 267,410 | 91,110 |
| Employed full-time............................... | 292,370 | 222,750 | 69,620 |
| Employed part-time.............................. | 26,760 | 14,290 | 12,480 |
| Unemployed, seeking............................ | 3,810 | 2,710 | 1,100 |
| Retired............................................... | 28,270 | 25,130 | 3,140 |
| Not employed, not seeking...................... | 7,310 | 2,530 | 4,780 |
| Computer and information scientists |  |  |  |
|  | 27,540 | 24,030 | 3,520 |
| Employed full-time.................................. | 24,680 | 21,600 | 3,080 |
| Employed part-time............................... | 1,270 | 990 | 280 |
| Unemployed, seeking............................ | 290 | 230 | 70 |
| Retired.............................................. | 980 | 970 | S |
| Not employed, not seeking..................... | 320 | 240 | 80 |
| Mathematical scientists |  |  |  |
| Total... | 21,920 | 18,300 | 3,620 |
| Employed full-time................................. | 18,050 | 15,370 | 2,680 |
| Employed part-time.............................. | 1,350 | 870 | 470 |
| Unemployed, seeking............................ | 240 | 110 | 140 |
| Retired............................................. | 1,920 | 1,700 | 230 |
| Not employed, not seeking...................... | 350 | 250 | 100 |
| Life and related scientists |  |  |  |
| Total. | 111,640 | 81,670 | 29,980 |
| Employed full-time................................ | 92,060 | 68,010 | 24,040 |
| Employed part-time.............................. | 5,490 | 3,340 | 2,150 |
| Unemployed, seeking............................. | 1,500 | 1,030 | 470 |
| Retired <br> Not employed, not seeking. | 9,510 | 8,330 | 1;180 |
|  | 3,080 | 960 | 2,130 |

See explanatory information and SOURCE at end of table.

Table 4. Doctoral scientists and engineers, by broad occupation, employment status, and sex: 1997

| Employment status/occupation* | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| Physical and related scientists |  |  |  |
| Total... | 82,600 | 72,240 | 10,370 |
| Employed full-time...................... | 68,110 | 59,700 | 8,400 |
| Employed part-ime....................... | 4,140 | 3,410 | 720 |
| Unemployed, seeking........... | 1,020 | 890 | 130 |
| Retired................................ | 8,060 | 7,630 | 430 |
| Not employed, not seeking............. | 1,280 | 600 | 680 |
| Social and related scientists |  |  |  |
| Total........................ | 49,090 | 36,120 | 12,970 |
| Employed full-time.......... | 39,770 | 29,380 | 10,400 |
| Employed par-time........... | 3,590 | 2,180 | 1,410 |
| Unemployed, seeking................. | 430 | 290 | 140 |
| Retired.... | 4,720 | 4,150 | 570 |
| Not employed, not seeking........... | 580 | 120 | 450 |
| Psychologists |  |  |  |
| Total............................... | 65,720 | 35,060 | 30,660 |
| Employed full-time.......... | 49,700 | 28,690 | 21,020 |
| Employed part-ime......................... | 10,930 | 3,490 | 7,440 |
| Unemployed, seeking.................... | 320 | 170 | 150 |
| Retired... | 3,080 | 2,360 | 720 |
| Not employed, not seeking..... | 1,700 | 360 | 1,340 |
| Engineers |  |  |  |
| Total...................................... | 77,220 | 72,40 | 4,980 |
| Employed full-time...................... | 66,740 | 62,560 | 4,180 |
| Employed part-ime.......................... | 3,000 | 2,550 | 450 |
| Unemployed, seeking........................ | 720 | 600 | 120 |
| Retired..................... | 5,940 | 5,940 | S |
| Not employed, not seeking.............. | 820 | 600 | 230 |
| Non-S\&E occupations |  |  |  |
| Total.................................................. | 146,340 | 109,570 | 36,770 |
| Employed full-time........................... | 118,800 | 90,510 | 28,290 |
| Employed part-ime.......................... | 10,770 | 6,470 | 4,300 |
| Unemployed, seeking.................... | 1,870 | 1,410 | 460 |
| Retired................................... | 11,130 | 9,340 | 1,790 |
| Not employed, not seeking................ | 3.780 | 1,850 | 1,930 |

If the respondent was unemployed, occupation of last job was reported
NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipient

Table 5. Doctoral scientists and engineers, by broad field of doctorate, employment status, and racelethnicity: 1997


See explanatory information and SOURCE at end of table.

Table 5. Doctoral scientists and engineers, by broad field of doctorate, employment status, and racelethnicity: 1997

| Page 2 of 2 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

NOTE:
Numbers are rounded to nearest ten.
Details may not add to total because of rounding. 'Other' race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctprate Recipients.

Table 6. Doctoral scientists and engineers, by broad occupation, employment status, and racelethinititg

| Employment status/occupation* |  |  |  |  | Hispanic | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | White | Black | Asian or Pacific Islander |  | American Indian/Alaskan Native |
| All Occupations |  |  |  |  |  |  |
| Total.......................................... | 582,080 | 481,370 | 12,510 | 73,420 | 12,690 | 1,930 |
| Employed full-time................ | 477,900 | 388,220 | 11,070 | 65,800 | 11,010 | 1,660 |
| Employed part-ime......... | 40,540 | 35,780 | 780 | 3,060 | 790 | 110 |
| Unemployed, seeking......... | 6,390 | 5,040 | 160 | 1,040 | 130 | S |
| Retired............................... | 45,340 | 42,520 | 290 | 1,970 | 460 | 100 |
| Not employed, not seeking....... | 11,910 | 9,810 | 210 | 1,550 | 300 | S |
| Scientists |  |  |  |  |  |  |
| Total........................ | 358,520 | 300,960 | 7,410 | 40,430 | 8,300 | 1,270 |
| Employed full-time... | 292,370 | 241,420 | 6,590 | 35,920 | 7,230 | 1,090 |
| Employed part-ime..................... | 26,760 | 23,840 | 490 | 1,820 | 490 | 100 |
| Unemployed, seeking.............. | 3,810 | 3,080 | 70 | 570 | 80 | S |
| Retired..................................... | 28,270 | 26,490 | 130 | 1,300 | 290 | S |
| Not employed, not seeking..... | 7,310 | 6,130 | 130 | 830 | 210 | S |
| Computer and information scientists |  |  |  |  |  |  |
| Total............. | 27,540 | 19,150 | 400 | 7,370 | 530 | 100 |
| Employed full-time................... | 24,680 | 16,740 | 350 | 7,010 | 510 | 80 |
| Employed part-ime............ | 1,270 | 1,070 | 50 | 140 | S | S |
| Unemployed, seeking. | 290 | 240 | S | S | S | S |
| Retired..................................... | 980 | 840 | S | 120 | S | S |
| Not employed, not seeking............. | 320 | 260 | S | 50 | S | S |
| Mathematical scientists |  |  |  |  |  |  |
| Total. | 21,920 | 17,550 | 390 | 3,330 | 620 | S |
| Employed full-ime... | 18,050 | 14,210 | 370 | 2,930 | 510 | S |
| Employed part-time...................... | 1,350 | 1,120 | S | 200 | S | S |
| Unemployed, seeking..... | 240 | 190 | S | S | S | S |
| Retired... | 1,920 | 1,780 | S | 70 | 70 | S |
| Not employed, not seeking........... | 350 | 240 | S | 80 | S | S |
| Life and related scientists |  |  |  |  |  |  |
| Total............................................ | 111,640 | 93,510 | 1,770 | 13,910 | 2,170 | 280 |
| Employed full-time..................... | 92,060 | 76,170 | 1,530 | 12,200 | 1,880 | 270 |
| Employed part-ime........................ | 5,490 | 4,630 | 100 | 640 | 110 | S |
| Unemployed, seeking.. | 1,500 | 1,140 | S | 290 | S | S |
| Retired...... | 9,510 | 9,010 | S | 390 | 70 | S |
| Not employed, not seeking.............. | 3,080 | 2,560 | 60 | 390 | 80 | S |

[^2]Table 6. Doctoral scientists and engineers, by broad occupation, employment status, and race/ethnicity: 1997


${ }^{*}$ If the respondent was unemployed, occupation of last job was reported.
NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding. 'Other' race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Field of doctorate | [in percent] |  |  |
| :---: | :---: | :---: | :---: |
|  | Unemployment rate | Involuntarily out-of-field rate | Labor force participation rate |
| Total................................................................................................ | 1.2 | 4.2 | 90.2 |
| Sciences...................................................................................... | 1.2 | 4.4 | 89.8 |
| Computer and mathematical sciences. | 0.6 | 4.7 | 93.0 |
| Computer and information sciences... | S | 1.4 | 99.3 |
| Mathematical sciences....................................................... | 0.7 | 5.8 | 91.1 |
| Biological and agricultural sciences........................................ | 1.5 | 3.7 | 89.0 |
| Agricultural and food sciences... | 1.7 | 5.1 | 86.1 |
| Biological sciences............. | 1.4 | 3.6 | 89.5 |
| Environmental life sciences......................................... | 2.9 | 2.7 | 88.7 |
| Health sciences......................................................................... | 0.8 | 2.2 | 91.4 |
| Physical and related sciences......................................... | 1.6 | 6.4 | 88.4 |
| Chemistry, except biochemistry........................................... | 2.0 | 4.2 | 86.9 |
| Earth/atmos/ocean sciences........................................ | 1.6 | 6.1 | 89.1 |
| Physics and astronomy....................................................... | 1.0 | 9.7 | 90.7 |
| Social sciences................ | 1.3 | 4.4 | 89.2 |
| Economics.............................................................. | 0.9 | 2.1 | 87.5 |
| Political and related sciences....................................... | 1.6 | 4.8 | 90.8 |
| Sociology.................. | 0.7 | 3.5 | 88.7 |
| Other social sciences.................................................. | 1.8 | 6.9 | 90.0 |
| Psychology................................................................ | 0.7 | 3.1 | 91.9 |
| Engineering............................................................................ | 1.1 | 3.4 | 91.9 |
| Aerospace/aeronautical engineering................................ | S | 5.7 | 88.4 |
| Chemical engineering................................................. | 2.0 | 2.6 | 89.4 |
| Civil engineering............................................................. | 1.0 | 2.4 | 95.9 |
| Electricalcomputer engineering..................................... | 0.7 | 3.8 | 92.0 |
| Materials/metallurgical engineering.................................. | 1.0 | 3.8 | 91.7 |
| Mechanical engineering............................................... | 0.9 | 2.4 | 93.6 |
| Other engineering....................................................... | 1.4 | 3.9 | 91.7 |

NOTE: $\quad$ Labor force is defined as those employed ( E ) plus those unemployed and seeking work (U). Population (P) is defined as all S\&E doctorate holders under age 76, residing in U.S. during the week of April 15, 1997, who eamed their doctorate from U.S. institutions. The labor force participation rate $\left(R_{L F}\right)$ is the ratio of the labor force to the population: $R_{L F}=(E+U) / P$. The unemployment rate $\left(R_{U}\right)$ is the ratio of those who are unemployed but seeking employment $(U)$ to the total labor force $(E+U): R_{U}=U /(E+U)$. Involuntary-out-of field rate is the percent of employed individuals who reported they were working part-time exclusively because suitable full-time work was not available and/or working in an area not related to the first doctoral degree (in their principal job) at least partially because suitable work in the field was not available.

KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 8. Selected employment characteristics of doctoral scientists and engineers, by occupation: 1997

| [In percent] |  |  |  |
| :---: | :---: | :---: | :---: |
| Occupation* | Unemployment rate | Involuntarily out-of-field rate | Labor force participation rate |
| Total.. | 1.2 | 4.2 | 90.2 |
| Scientists. | 1.2 | 2.9 | 90.1 |
| Computer and mathematical scientists............................................... | 1.2 | 8.7 | 92.8 |
| Computer/information scientists....................................................... | 1.3 | 16.2 | 95.1 |
| Mathematical scientists.. | 1.8 | 2.8 | 90.4 |
| Postsecondary teachers, computer and mathematical sciences.... | 0.8 | 2.3 | 91.1 |
| Life and related scientists................................................................. | 1.5 | 1.7 | 88.7 |
| Agricultural scientists...................................................................... | 2.0 | 2.4 | 80.9 |
| Biological scientists....................................................................... | 2.1 | 1.8 | 90.1 |
| Forestry and conservation scientists............................................. | S | S | 83.1 |
| Postsecondary teachers, life and related sciences... | 0.4 | 1.4 | 89.0 |
| Physical and related scientists.................................................................. | 1.4 | 2.1 | 88.7 |
| Chemists, except biochemistry......................................... | 2.0 | 2.1 | 87.4 |
| Earth scientists................................................................................ | 1.4 | 2.6 | 88.2 |
| Physics and astronomers.. | 1.0 | 1.9 | 90.1 |
| Other physical scientists.. | S | 7.0 | 80.4 |
| Postsecondary teachers, physical and related sciences | 1.1 | 1.7 | 90.0 |
| Social scientists.. | 1.0 | 2.0 | 89.2 |
| Economists... | 1.5 | 0.8 | 90.1 |
| Political scientists.............................. | S | 1.6 | 76.1 |
| Sociologists and anthropologists........... | 0.9 | S | 82.3 |
| S\&T historians and other social scientists....... | 1.9 | 2.0 | 87.7 |
| Postsecondary teachers, social and related sciences ....................... | 0.6 | 2.2 | 90.4 |
| Psychologists................ | 0.5 | 2.0 | 92.7 |
| Psychologists........... | 0.5 | 2.2 | 93.3 |
| Postsecondary teachers, psychology..... | 0.6 | 1.3 | 91.0 |
|  | 1.0 | 3.2 | 91.2 |
| Aerospace/aeronautical engineers...... | 1.0 | 5.2 | 85.9 |
| Chemical engineers....................... | 2.8 | 3.1 | 90.3 |
| Civil and architectural engineers.......... | 0.6 | 2.8 | 96.1 |
| Electric and related engineers...................... | 0.5 | 4.3 | 91.3 |
| Industrial engineers.... | 3.5 | S | 100.0 |
| Mechanical engineers... | 0.9 | 2.4 | 93.0 |
| Other engineers.... | 1.3 | 5.5 | 90.5 |
| Postsecondary teachers, engineering......................................... | 0.4 | 0.5 | 91.3 |
| Non-S\&E occupations.. | 1.4 | 8.1 | 89.8 |
| Managers, administrators, etc................. | 1.0 | 4.5 | 91.0 |
| Health and related occupations................................................... | 1.2 | 8.3 | 92.8 |
| Teachers, except S\&E postsecondary teachers............................ | 1.6 | 4.7 | 88.8 |
| Social services and related occupations....................................... | S | 6.8 | 84.1 |
| Technologists, etc. | 3.0 | 32.2 | 91.6 |
| Sales and marketing occupations... | 1.7 | 24.1 | 88.7 |
| Other non-S\&E occupations................................................... | 3.7 | 20.1 | 82.4 |

*If the respondent was unemployed, occupation of last job was reported.
NOTE: Labor force is defined as those employed (E) plus those unemployed and seeking work (U). Population ( P ) is defined as all S\&E doctorate holders under age 76 , residing in U.S. during the week of April 15, 1997, who eamed their doctorate from U.S. institutions. The labor force participation rate $\left(R_{L F}\right)$ is the ratio of the labor force to the population: $R_{L F}=(E+U) / P$. The unemployment rate $\left(R_{U}\right)$ is the ratio of those who are unemployed but seeking employment ( $U$ ) to the total labor force ( $\mathrm{E}+\mathrm{U}$ ): $\mathrm{R}_{U}=\mathrm{U} /(\mathrm{E}+\mathrm{U})$. Involuntary-out-of field rate is the percent of employed individuals who reported they were working part-time exclusively because suitable full-time work was not available and/or working in an area not related to the first doctoral degree (in their principal job) at least partially because suitable work in the field was not available.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 9. Doctoral scientists and engineers, by field of doctorate and sex: 1997

| Field of doctorate | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| Total. | 582,080 | 449,220 | 132,860 |
| Sciences... | 484,600 | 357,540 | 127,060 |
| Computer and mathematical sciences...................... | 35,060 | 30,100 | 4,960 |
| Computerfinformation sciences.... | 8,080 | 6,700 | 1,390 |
| Mathematical sciences........................................ | 26,980 | 23,400 | 3,580 |
| Biological and agricultural sciences.......................... | 142,100 | 105,310 | 36,790 |
| Agricultural/food sciences..................................... | 18,530 | 15,910 | 2,620 |
| Biological sciences............................................ | 118,580 | 84,940 | 33,640 |
| Environmental life sciences.................................. | 4,990 | 4,460 | 530 |
| Health sciences.................................................. | 18,940 | 9,060 | 9,880 |
| Physical and related sciences................................. | 120,960 | 106,560 | 14,410 |
| Chemistry except biochemistry.............................. | 63,730 | 54,080 | 9,650 |
| Earth/atmos/ocean sciences... | 17,240 | 15,080 | 2,160 |
| Physics and astronomy...................................... | 39,990 | 37,400 | 2,590 |
| Social sciences.......... | 80,690 | 58,020 | 22,670 |
| Economics... | 23,140 | 19,630 | 3,510 |
| Political and related sciences......... | 17,700 | 14,100 | 3,600 |
| Sociology......................... | 15,020 | 9,490 | 5,530 |
| Other social sciences........................................... | 24,840 | 14,800 | 10,030 |
| Psychology............................................................ | 86,850 | 48,500 | 38,350 |
| Engineering...................................................... | 97,480 | 91,680 | 5,810 |
| Aerospace/aeronautical engineering....................... | 4,220 | 4,160 | 60 |
| Chemical engineering.......................................... | 14,010 | 13,170 | 840 |
| Civil/architectural engineering............................... | 8,620 | 8,120 | 500 |
| Electrical/computer engineering............................. | 26,010 | 24,790 | 1,220 |
| Materials/metallurgical engineering......................... | 9,370 | 8,370 | 1,000 |
| Mechanical engineering...................................... | 11,950 | 11,550 | 390 |
| Other engineering..... | 23,310 | 21,520 | 1,790 |

NOTE: $\quad$ Numbers are rounded to nearest ten. Details may not add to total because of rounding.
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 10. Doctoral scientists and engineers, by occupation and sex: 1997

| Occupation* | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| Total................. | 582,080 | 449,220 | 132,860 |
| Scientists..................................................................................... | 358,520 | 267.410 | 91,110 |
| Computer and mathematical scientists..... | 49,460 | 42,320 | 7,140 |
| Computerinformation scientists... | 22,200 | 19,650 | 2,540 |
| Mathematical scientists.. | 6,670 | 5,260 | 1,410 |
| Postsecondary teachers, computer and mathematical sciences.. | 20,600 | 17,410 | 3,190 |
| Life and related scientists................................................................ | 111,640 | 81,670 | 29,980 |
| Agricultural scientists.................................... | 11,570 | 9,920 | 1,650 |
| Biological scientists.... | 62,990 | 43,170 | 19,830 |
| Forestry and conservation scientists.................... | 1,480 | 1,330 | 150 |
| Postsecondary teachers, life and related sciences... | 35,600 | 27,250 | 8,350 |
| Physical and related scientists..... | 82,600 | 72,240 | 10,370 |
| Chemists, except biochemistry..... | 28,660 | 24,310 | 4,350 |
| Earth scientists............. | 10,160 | 9,250 | 910 |
| Physics and astronomers....................... | 14,890 | 13,860 | 1,020 |
| Other physical scientists................ | 1,590 | 1,430 | 170 |
| Postsecondary teachers, physical and related sciences | 27,300 | 23,390 | 3,920 |
| Social scientists..... | 49,090 | 36,120 | 12,970 |
| Economists... | 7,480 | 5,820 | 1,660 |
| Political scientists........... | 1,240 | 1,050 | 200 |
| Sociologists and anthropologists................ | 4,060 | 2,090 | 1,970 |
| S\&T historians and other social scientists... | 2,140 | 1,120 | 1,020 |
| Postsecondary teachers, social and related sciences .. | 34,170 | 26,050 | 8,120 |
| Psychologists.................... | 65,720 | 35,060 | 30,660 |
| Psychologists.................. | 48,590 | 24,470 | 24,120 |
| Postsecondary teachers, psychology........................ | 17,140 | 10,590 | 6,550 |
| Engineers....................... | 77,220 | 72,240 | 4,980 |
| Aerospace/aeronautical engineers.... | 4,690 | 4,430 | 260 |
| Chemical engineers.... | 7,670 | 7,080 | 590 |
| Civil and architectural engineers...... | 3,510 | 3,280 | 230 |
| Electric and related engineers......... | 14,850 | 14,160 | 700 |
| Industrial engineers... | 1,260 | 1,050 | 210 |
| Mechanical engineers..... | 8,490 | 8,260 | 220 |
| Other engineers................................................................. | 17,910 | 16,350 | 1,550 |
| Postsecondary teachers, engineering........ | 18,850 | 17,650 | 1,200 |
| Non-S\&E occupations........................................................................ | 146,340 | 109,570 | 36,770 |
| Managers, administrators, etc............ | 78,750 | 65,260 | 13,490 |
| Heath and related occupations................. | 15.760 | 10,800 | 4,950 |
| Teachers, except S\&E postsecondary teachers................................ | 23,770 | 12,740 | 11,040 |
| Social services and related occupations............................................... | 2,400 | 1,360 | 1,040 |
| Technologists, etc. | 5,140 | 4,640 | 500 |
| Sales and marketing occupations.................... | 6,000 | 4,990 | 1,010 |
| Other non-S\&E occupations...................................................... | 14,520 | 9,780 | 4,740 |

[^3]Table 11. Doctoral scientists and engineers, by field of doctorate and race/ethnicity: 1997

| Field of doctorate | Total | White | Black | Asian or Pacific Islander | Hispanic | American Indian/Alaskan Native |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total....................................................................... | 582,080 | 481,530 | 12,510 | 73,420 | 12,690 | 1,930 |
| Sciences....................................................... | 484,600 | 414,080 | 11,210 | 46,660 | 10,860 | 1,780 |
| Computer and mathematical sciences.................. | 35,060 | 27,330 | 520 | 6,350 | 820 | S |
| Computerfinformation sciences........................ | 8,080 | 5,420 | 120 | 2,340 | 190 | S |
| Mathematical sciences.............................. | 26,980 | 21,910 | 400 | 4,010 | 620 | S |
| Biological and agricultural sciences...................... | 142,100 | 121,440 | 2,500 | 15,060 | 2,690 | 410 |
| Agriculturalfood sciences............................... | 18,530 | 15,800 | 290 | 2,020 | 390 | S |
| Biological sciences....................................... | 118,580 | 101,120 | 2,140 | 12,760 | 2,230 | 340 |
| Environmental life sciences.... | 4,990 | 4,520 | 70 | 290 | 60 | S |
| Health sciences....................... | 18,940 | 15,920 | 820 | 1,670 | 440 | 100 |
| Physical and related sciences............................... | 120,960 | 100,620 | 1,550 | 16,080 | 2,380 | 330 |
| Chemistry except biochemistry......................... | 63,730 | 52,160 | 1,080 | 8,870 | 1,410 | 220 |
| Earth/atmos/ocean sciences.... | 17,240 | 15,570 | S | 1,300 | 310 | S |
| Physics and astronomy................................. | 39,990 | 32,890 | 440 | 5,910 | 660 | 90 |
| Social sciences....................................................... | 80,690 | 69,330 | 3,000 | 5,790 | 2,080 | 480 |
| Economics... | 23,140 | 19,530 | 590 | 2,490 | 470 | 50 |
| Poilitical and related sciences... | 17,700 | 15,600 | 850 | 820 | 370 | 60 |
| Sociology................................................... | 15,020 | 13,160 | 730 | 650 | 420 | 60 |
| Other social sciences.................................... | 24,840 | 21,040 | 840 | 1,830 | 820 | 310 |
| Psychology................................................... | 86,850 | 79,440 | 2,810 | 1,710 | 2,460 | 430 |
| Engineering........................................................... | 97,480 | 67,450 | 1,310 | 26,760 | 1,830 | 140 |
| Aerospace/aeronautical engineering.................. | 4,220 | 3,280 | 40 | 840 | 70 | S |
| Chemical engineering........................................... | 14,010 | 10,030 | 150 | 3,610 | 220 | S |
| Civilarchitectural engineering................................ | 8,620 | 5,790 | 220 | 2,390 | 220 | S |
| Electrical/computer engineering.............................. | 26,010 | 17,470 | 320 | 7,630 | 520 | 70 |
| Materials/metallurgical engineering..................... | 9,370 | 6,220 | 70 | 2,870 | 200 | S |
| Mechanical engineering........................................ | 11,950 | 7,780 | 150 | 3,780 | 230 | S |
| Other engineering........................................... | 23,310 | 16,880 | 360 | 5,650 | 360 | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
'Other race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 12. Doctoral scientists and engineers, by occupation and race/ethnicity: 1997

| Occupation* | Total | White | Black | Asian or Pacific Islander | Hispanic | Page 1 of 2American <br> Indian/Alaskan <br> Native |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Total. | 582,080 | 481,530 | 12,510 | 73,420 | 12,690 | 1,930 |
| Scientists.... | 358,520 | 301,110 | 7,410 | 40,430 | 8,300 | 1,270 |
| Computer and mathematical scientists.. | 49,460 | 36,700 | 790 | 10,690 | 1,160 | 130 |
| Computer/information scientists.. | 22,200 | 15,360 | 200 | 6,150 | 410 | 80 |
| Mathematical scientists.............................................................. | 6,670 | 5,220 | 140 | 1,120 | 190 | S |
| Postsecondary teachers, computer and mathematical sciences....... | 20,600 | 16,130 | 450 | 3,420 | 560 | S |
| Life and related scientists........................................................ | 111,640 | 93,520 | 1,770 | 13,910 | 2,170 | 280 |
| Agricultural scientists..... | 11,570 | 10,050 | 90 | 1,210 | 200 | S |
| Biological scientists.. | 62,990 | 50,220 | 880 | 10,400 | 1,310 | 190 |
| Forestry and conservation scientists... | 1,480 | 1,350 | S | 70 | S | S |
| Postsecondary teachers, life and related sciences....... | 35,600 | 31,910 | 770 | 2,230 | 650 | 40 |
| Physical and related scientists... | 82,600 | 68,620 | 1,190 | 10,750 | 1,820 | 220 |
| Chemists, except biochemistry... | 28,660 | 21,970 | 540 | 5,590 | 530 | S |
| Earth scientists..... | 10,160 | 8,830 | 80 | 940 | 270 | 50 |
| Physics and astronomers... | 14,890 | 12,500 | 100 | 2,060 | 220 | S |
| Other physical scientists.. | 1,590 | 1,410 | S | 120 | S | S |
| Postsecondary teachers, physical and related sciences... | 27,300 | 23;910 | 450 | 2,050 | 750 | 140 |
| Social scientists.. | 49,090 | 41,820 | 1,800 | 3,800 | 1,400 | 270 |
| Economists... | 7,480 | 6,160 | 50 | 1,020 | 210 | S |
| Political scientists.. | 1,240 | 1,060 | 30 | 110 | S | S |
| Sociologists and anthropologists. | 4,060 | 3,630 | 170 | 160 | 100 | 10 |
| S\&T historians and other social scientists.. | 2,140 | 1,900 | 40 | 160 | S | S |
| Postsecondary teachers, social and related sciences. | 34,170 | 29,070 | 1,510 | 2,340 | 1,020 | 220 |
| Psychologists... | 65,720 | 60,450 | 1,860 | 1,290 | 1,760 | 380 |
| Psychologists.... | 48,590 | 44,820 | 1,350 | 870 | 1,240 | 320 |
| Postsecondary teachers, psychology...... | 17,140 | 15,630 | 510 | 410 | 520 | 60 |
| Engineers.... | 77,220 | 54,430 | 960 | 20,200 | 1,520 | 120 |
| Aerospace/aeronautical engineers... | 4,690 | 3,720 | S | 870 | S | S |
| Chemical engineers. | 7,670 | 5,310 | S | 2,190 | 120 | S |
| Civil and architectural engineers... | 3,510 | 2,040 | 70 | 1,290 | 110 | S |
| Electric and related engineers...... | 14,850 | 9,920 | 160 | 4,540 | 230 | S |
| Industrial engineers............................................. | 1,260 | 840 | S | 370 | 60 | S |
| Mechanical engineers..... | 8,490 | 5,220 | 90 | 3,020 | 150 | S |
| Other engineers........................................ | 17,910 | 12,700 | 120 | 4,740 | 300 | 50 |
| Postsecondary teachers, engineering...................................... | 18,850 | 14,690 | 430 | 3,180 | 510 | S |

[^4]Table 12. Doctoral scientists and engineers, by occupation and racelethnicity: 1997

| Page 2 of 2 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |

*If the respondent was unemployed, occupation of last job was reported.
NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
'Other' race included with 'white'.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 13. Doctoral scientists and engineers, by field of doctorate and citizenship status: 1997

| Field of doctorate | Total | U.S. citizen |  |  | Non-U.S. citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | Temporary resident |
| Total... | 582,080 | 531,450 | 465,260 | 66,190 | 50,630 | 41,560 | 9,070 |
| Sciences............................................ | 484,600 | 450,450 | 405,970 | 44,480 | 34,150 | 28,280 | 5,870 |
| Computer and mathematical sciences..... | 35,060 | 29,800 | 25,330 | 4.470 | 5,260 | 4,460 | 800 |
| Computerinformation sciences........ | 8,080 | 5,830 | 4,770 | 1,060 | 2,250 | 1,970 | 280 |
| Mathematical sciences........................: | 26,980 | 23,970. | 20,560 | 3,410 | 3,010 | 2,480 | 530 |
| Biological and agricultural sciences........... | 142,100 | 132,250 | 119,240 | 13,000 | 9,850 | 7,970 | 1,880 |
| Agriculturalfood sciences....................... | 18,530 | 17,250 | 15,150 | 2,090 | 1,280 | 1,030 | 250 |
| Biological sciences.................... | 118,580 | 110,310 | 99,670 | 10,640 | 8,270 | 6,700 | 1,580 |
| Environmental life sciences.... | 4,990 | 4,690 | 4,420 | 270 | 300 | 240 | 60 |
| Health sciences... | 18,940 | 17,800 | 16,060 | 1,730 | 1,150 | 910 | 240 |
| Physical and related sciences.................. | 120,960 | 110,440 | 96,330 | 14,120 | 10,520 | 9,000 | 1,520 |
| Chemistry except biochemistry... | 63,730 | 58,770 | 51,140 | 7,640 | 4,960 | 4,300 | 660 |
| Earth/atmos/ocean sciences.................. | 17,240 | 15,870 | 14,560 | 1,310 | 1,370 | 1,170 | 200 |
| Physics and astronomy... | 39,990 | 35,800 | 30,630 | 5,170 | 4,190 | 3,520 | 670 |
| Social sciences................................. | 80,690 | 74,920 | 67,420 | 7,500 | 5,770 | 4,570 | 1,190 |
| Economics................................. | 23,140 | 20,640 | 18,120 | 2,510 | 2,500 | 1,900 | 600 |
| Political and related sciences.............. | 17,700 | 16,890 | 15,150 | 1,750 | 810 | 600 | 200 |
| Sociology................................... | 15,020 | 14,260 | 13,330 | 930 | 750 | 690 | 70 |
| Other social sciences... | 24,840 | 23,130 | 20,820 | 2,310 | 1,710 | 1,380 | 330 |
| Psychology....................................... | 86,850 | 85,250 | 81,590 | 3,660 | 1,610 | 1,380 | 220 |
| Engineering........................................ | 97,480 | 81,000 | 59,290 | 21,720 | 16,480 | 13,280 | 3,200 |
| Aerospace/aeronautical engineering........ | 4,220 | 3,630 | 2,770 | 860 | 590 | 470 | 120 |
| Chemical engineering.......................... | 14,010 | 11,960 | 9,230 | 2,730 | 2,050 | 1,540 | 510 |
| Civilarchitectural engineering.................. | 8,620 | 7,030 | 4,580 | 2,440 | 1,600 | 1,340 | 250 |
| Electricallcomputer engineering.............. | 26,010 | 20,850 | 14,780 | 6,070 | 5,150 | 4,010 | 1,150 |
| Materials/metallurgical engineering.......... | 9,370 | 7,620 | 5,800 | 1,820 | 1,750 | 1,450 | 300 |
| Mechanical engineering....................... | 11,950 | 9,750 | 7,010 | 2,730 | 2,200 | 1,830 | 370 |
| Other engineering................................ | 23,310 | 20,170 | 15,110 | 5,060 | 3,140 | 3,640 | 500 |

## NOTE: Numbers are rounded to nearest ten. <br> Details may not add to total because of rounding.

SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Page 1 of 2

| Occupation* | Total | U.S. cilizen |  |  | Non-U.S. citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | Temporary resident |
| Total. | 582,080 | 531,450 | 465,260 | 66,190 | 50,630 | 41,560 | 9,070 |
| Scientists... | 358,520 | 327,310 | 292,860 | 34,440 | 31,210 | 25,400 | 5,810 |
| Computer and mathematical scientists...................................... | 49,460 | 41,190 | 33,900 | 7,290 | 8,270 | 6,680 | 1,600 |
| Computer/information scientists..... | 22,200 | 17,800 | 14,410 | 3,390 | 4,400 | 3,450 | 950 |
| Mathematical scientists................................................................. | 6,670 | 5,900 | 4,780 | 1,120 | 770 | 530 | 230 |
| Postsecondary teachers, computer and mathematical sciences.... | 20,600 | 17,490 | 14,720 | 2,770 | 3,110 | 2,690 | 410 |
| Life and related scientists..................................................... | 111,640 | 102,040 | 91,560 | 10,480 | 9,610 | 7,670 | 1,940 |
| Agricuitural scientists.... | 11,570 | 10,830 | 9,720 | 1,110 | 740 | 560 | 180 1660 |
| Biological scientists...... | 62,990 | 55,370 | 48,640 | 6,730 | 7,620 | 5,970 | 1,660 |
| Forestry and conservation scientists.... | 1,480 | 1,440 | 1,380 | 602,570 | . S | S1,100 | S110 |
| Postsecondary teachers, life and related sciences..... | 35,600 | 34,400 | 31,830 |  | 1,200 |  |  |
| Physical and related scientists... | 82,600 | 74,640 | 65,290 | 9,340 | 7,960 | 6,750 | 1,210 |
| Chemists, except biochemistry.. | 28,660 | 25,070 | 21,100 | 3,970 | 3,600 | 3,080 | 520 |
| Earth scientists. | 10,160 | 9,100 | 8,280 | 820 | 1,060 | 900 | 170 |
| Physics and astronomers.... | 14,890 | 13,310 | 11,480 | 1,830 | 1,580 | 1,180 | 400 |
| Other physical scientists. | 1,590 | 1,410 | 1,340 | 70 | 190 | 180 | S |
| Postsecondary teachers, physical and related sciences. | 27,300 | 25,760 | 23,110 | 2,650 | 1,540 | 1,420 | 120 |
| Social scientists... | 49,090 | 45,020 | 40,340 | 4,690 | 4,060 | 3,170 | 890 |
| Economists... | 7.480 | 6,410 | 5,760 | 650 | 1,070 | 810 | 260 |
| Political scientists...... | 1,240 | 1,160 | 990 | 170 | 80 | S | 60 |
| Sociologists and anthropologists... | 4,060 | 3,870 | 3,650 | 220 | 190 | 100 | 100 |
| S\&T historians and other social scientists. | 2,140 | 2,040 | 1,910 | 130 | 100 | 80 | S |
| Postsecondary teachers, social and related sciences . | 34,170 | 31,550 | 28,040 | 3,510 | 2,620 | 2,160 | 460 |
| Psychologists...................................................................... | 65,720 | 64,420 | 61,770 | 2,650 | 1,300 | 1,130 | 180 |
| Psychologists... | 48,590 | 47,75016,670 | 45,66016,110 | 2,100 | 830 | 750 | 90 |
| Postsecondary teachers, psychology..................................... | 17,140 |  |  | 550 | 470 | 380 | 90 |
| Engineers..................................... | 77,220 | 64,150 | 48,500 | 15,660 | 13,070 | 10,630 | 2,440 |
| Aerospace/aeronautical engineers... | 4,690 | 4,360 | 3,450 | 910 | 320 | 260 | 70 |
| Chemical engineers.... | 7,670 | 6,250 | 4,780 | 1,470 | 1,420 | 990 | 430 |
| Civil and architectural engineers.. | 3,510 | 2,590 | 1,560 | 1,020 | 920 | 780 | 140 |
| Electric and related engineers.. | 14,850 | 11,680 | 8,870 | 2,810 | 3,170 | 2,530 | 650 |
| Industrial engineers.......... | 1,260 | 960 | 740 | 220 | 300 | 230 | 70 |
| Mechanical engineers... | 8,490 | 6,700 | . 4,450 | 2,250 | 1,790 | 1,430 | 360 |
| Other engineers.............................................................. | $\begin{array}{r} 17,910 \\ 18,850 \end{array}$ | $\begin{aligned} & 15,110 \\ & 16,500 \end{aligned}$ | $\begin{aligned} & 11,890 \\ & 12,750 \end{aligned}$ | 3,2203,750 | 2,790 | 2,310 | 480240 |
| Postsecondary teachers, engineering................................... |  |  |  |  | 2,350 | 2,110 |  |

[^5]
## Table 14. Doctoral scientists and engineers, by occupation and citizenship status: 1997


"If the respondent was not currently employed, occupation of last job was reported.
NOTE: Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.


[^6]$\mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases)
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.


[^7]Table 16. Doctoral scientists and engineers, by occupation and age: 1997 Page 2 of 2

| Occupation* | Total | Under 35 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | 60-64 | 65-75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engineers.. | 77,220 | 12,380 | 13,340 | 10,930 | 8,680 | 10,120 | 8,450 | 6,370 | 6,950 |
| Aerospace/aeronautical engineers....... | 4,690 | 570 | 660 | 470 | 600 | 550 | 860 | 410 | 560 |
| Chemical engineers.. | 7,670 | 1,580 | 1,610 | 1,150 | 650 | 870 | 490 | 580 | 730 |
| Civil and architectural engineers............................................... | 3,510 | 420 | 620 | 610 | 510 | 510 | 410 | 230 | 210 |
| Electric and reiated engineers.... | 14,850 | 3,470 | 2,550 | 1,790 | 1,500 | 1,690 | 1,820 | 770 | 1,260 |
| Industrial engineers................................................................. | 1,260 | 230 | 290 | 250 | 140 | 220 | S | S | 60 |
| Mechanical engineers....... | 8,490 | 1,470 | 1,660 | 1,210 | 1,130 | 1,100 | 780 | 690 | 450 |
| Other engineers................ | 17,910 | 2,500 | 3,020 | 2,650 | 2,130 | 2,730 | 1,670 | 1,460 | 1,750 |
| Postsecondary teachers, engineering... | 18,850 | 2,140 | 2,930 | 2,800 | 2,030 | 2,450 | 2,370 | 2,200 | 1,930 |
| Non-S\&E occupations.... | 146,340 | 7,930 | 12,140 | 20,600 | 27,760 | 30,640 | 22,020 | 11,070 | 14,190 |
| Managers, administrators, etc........................................................ | 78,750 | 2,100 | 5,220 | 10,480 | 15,940 | 18,070 | 14,240 | 6,250 | 6,460 |
| Health and related occupations............................ | 15,760 | 1,700 | 1,750 | 2,990 | 2,390 | 2,980 | 1,640 | 990 | 1,310 |
| Teachers, except S\&E postsecondary teachers... | 23,770 | 1,450 | 2,170 | 3,450 | 4,550 | 4,730 | 2,710 | 1,870 | 2,850 |
| Social services and related occupations.......................................... | 2,400 | 110 | 230 | 200 | 540 | 470 | 310 | 160 | 380 |
| Technologists, etc.............. | 5,140 | 730 | 730 | 780 | 810 | 840 | 640 | 180 | 430 |
| Sales and marketing occupations................................................. | 6,000 | 460 | 550 | 890 | 1,200 | 900 | 670 | 570 | 770 |
| Other non-S\&E occupations............................................................... | 14,520 | 1,370 | 1,490 | 1,810 | 2,340 | 2,650 | 1,820 | 1,050 | 1,990 |

*If the respondent was not currently employed, occupation of last job was reported.
$\begin{array}{ll}\text { NOTE: } & \text { Numbers are rounded to nearest ten. } \\ \text { Ketails may not add to total because of rounding. } \\ \text { KEY: } & \text { S=Suppressed due to too few cases (fewer than } 50 \text { weighted cases). } \\ \text { SOURCE: } & \text { National Science Foundation/Division of Science Resources Studies, }\end{array}$
Numbers are rounded to nearest ten.
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 17. Employed doctoral scientists and engineers, by field of doctorate and sector of employment: 1997

| Field of doctorate | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Selfemployed | Private not-for-profit | Federal govemment | State and local government | Other sector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total.................................. | 518,440 | 233,180 | 13,650 | 165,040 | 25,100 | 26,330 | 38,070 | 15,450 | 1,620 |
| Sciences......................................... | 429,820 | 206,220 | 13,280 | 115,900 | 23,000 | 23,870 | 31,910 | 14,210 | 1,420 |
| Computer and mathematical sciences.... | 32,400 | 18,740 | 730 | 9,800 | 520 | 950. | 1,510 | 140 | S |
| Computerfinformation sciences........ | 8,000 | 3,320 | 70 | 3,950 | 130 | 220 | 270 | S | S |
| Mathematical sciences........................ | 24,400 | 15,420 | 660 | 5,850 | 390 | 730 | 1,250 | 90 | S |
| Biological and agricultural sciences......... | 124,600 | 68,640 | 3,040 | 29,700 | 3,040 | 5,730 | 10,820 | 3,430 | 200 |
| Agricultural food sciences................... | 15,670 | 7,470 | 250 | 5,130 | 680 | 370 | 1,510 | 240 | S |
| Biological sciences.................. | 104,630 | 59,540 | 2,750 | 23,630 | 2,290 | 5,140 | 8,330 | 2,790 | 160 |
| Environmental life sciences... | 4,300 | 1,640 | S | 950 | 70 | 210 | 970 | 400 | S |
| Health sciences........................... | 17,180 | 9,210 | 450 | 3,670 | 580 | 1,440 | 1,150 | 680 | S |
| Physical and related sciences.......... | 105,250 | 36,940 | 2,650 | 47,020 | 2,970 | 3,550 | 10,190 | 1,820 | 110 |
| Chemistry except biochemistry...... | 54,220 | 15,620 | 1,540 | 30,200 | 1,670 | 1,640 | 2,940 | 610 | S |
| Earth/atmos/ocean sciences....... | 15,110 | 7.140 | 320 | 3,490 | 500 | 550 | 2,380 | 710 | S |
| Physics and astronomy...................... | 3,590 | 14,180 | 800 | 13,330 | 810 | 1,360 | 4,880 | 500 | 80 |
| Social sciences... | 71,070 | 45,510 | 2,020 | 8,380 | 2,460 | 4,170 | 4,880 | 2,640 | 1,020 |
| Economics....... | 20,080 | 11,460 | 120 | 3,360 | 440 | 1,000 | 2,250 | 540 | 910 |
| Political and related sciences...... | 15,820 | 10,660 | 490 | 1,500 | 570 | 790 | 1,040 | 740 | S |
| Sociology............ | 13,230 | 9,480 | 510 | 820 | 450 | 1,010 | 460 | 480 | S |
| Other social sciences.... | 21,940 | 13,910 | 900 | 2,700 | 1,000 | 1,380 | 1,120 | 880 | 60 |
| Psychology...................................... | 79,320 | 27,190 | 4,400 | 17,340 | 13,440 | 8,030 | 3,360 | 5,510 | 50 |
| Engineering......................................... | 88,620 | 26,960 | 370 | 19,140 | 2,100 | 2,460 | 6,150 | 1,240 | 210 |
| Aerospace/aeronautical engineering..... | 3,720 | 1,110 | S | 1,850 | 130 | 160 | 450 | S | S |
| Chemical engineering....................... | 12,280 | 2,580 | 50 | 8,410 | 290 | 390 | 510 | S | S |
| Civilarchitectural engineering... | 8,190 | 3,570 | S | 3,230 | 170 | 230 | 570 | 380 | S |
| Electrical/computer engineering.......... | 23,750 | 6,980 | 70 | 14,130 | 500 | 570 | 1,270 | 170 | 70 |
| Materials/metallurgical engineering....... | 8,510 | 1,570 | S | 5,620 | 280 | 190 | 780 | S | S |
| Mechanical engineering...................... | 11,080 | 3,280 | S | 6,540 | 270 | 280 | 650 | S | S |
| Other engineering............................ | 21,100 | 7,880 | 130 | 9,370 | 470 | 660 | 1,920 | 580 | 90 |

NOTE: Numbers are rounded to nearest ten. Details may not add to total because of rounding.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.



| Occupation* | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Selfemployed | Private not-for-profit | Federal government | State and local government | Page 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Other sector |
| Engineers | 69,740 | 22,770 | 170 | 37,920 | 1,410 | 1,730 | 4.830 | 860 | 50 |
| Aerospace/aeronautical engineers.......................... | 3,990 | 440 | s | 2,460 | 80 | 240 | 750 | S | S |
| Chemical engineers............................................. | 6,730 | 530 | S | 5,610 | 150 | 190 | 220 | S | S |
| Civil and architectural engineers... | 3,350 | 440 | S | 2,060 | 160 | 80 | 250 | 370 | S |
| Electric and related engineers.... | 13,500 | 1,270 | S | 10,430 | 250 | 430 | 1,020 | 70 | S |
| Industrial engineers.... | 1,220 | 60 | S | 1,030 | S | S | 90 | S | S |
| Mechanical engineers... | 7,820 | 900 | S | 5,760 | 170 | 200 | 740 | S | S |
| Other engineers.... | 16,000 | 2,300 | S | 10,460 | 540 | 570 | 1,740 | 380 | S |
| Postsecondary teachers, engineering... | 17,140 | 16,850 | 130 | 100 | S | S | S | S | S |
| Non-S\&E occupations................. | 129,570 | 41,990 | 4,880 | 51,070 | 7,380 | 10,080 | 7,980 | 5,720 | 460 |
| Managers, administrators, etc.... | 71,010 | 17,530 | 1,360 | 34,110 | 1,620 | 6,270 | 5,750 | 3,980 | 410 |
| Heath and related occupations... | 14,440 | 5.520 | 120 | 4,240 | 1,400 | 1,770 | 880 | 490 | S |
| Teachers, except S\&E postsecondary teachers $\qquad$ | 20,780 | 16,970 | 2,970 | 420 | 140 | 100 | 80 | 100 | S |
| Social services and related occupations.. | 2,020 | 300 | 310 | 160 | 100 | 920 | S | 210 | S |
| Technologists, etc................................................... | 4,570 | 440 | S | 3,440 | 180 | 100 | 230 | 150 | S |
| Sales and marketing occupations.................. | 5,230 | 70 | S | 4,030 | 980 | 130 | S | S | S |
| Other non-S\&E occupations.................................. | 11,530 | 1,180 | 90 | 4,670 | 2,960 | 800 | 1,010 | 780 | S |

[^8]Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
$S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.


NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Field of doctorate/sex | Total | Tenured | Not tenured |  | Not applicable |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | In tenure track | Not in track |  |
| Total (number).... | 233,180 | 121,950 | 37,140 | 26,250 | 47,840 |
| Male (percent)... | 74.9 | 83.7 | 65.1 | 63.6 | 66.4 |
| Female (percent). | 25.1 | 16.3 | 34.9 | 36.4 | 33.6 |
| Sciences (number).......... | 206,220 | 106,030 | 32,700 | 23,790 | 43,710 |
| Male (percent)........................ | 72.5 | 81.8 | 62.0 | 60.8 | 64.2 |
| Female (percent)... | 27.5 | 18.2 | 38.0 | 39.2 | 35.8 |
| Computer and information sciences...................... | 3,320 | 1,450 | 1,270 | 260 | 350 |
| Male (percent).......................... | 77.7 | 78.0 | 79.1 | 63.1 | 82.3 |
| Female (percent).... | 22.3 | 22.0 | 20.9 | 36.9 | 17.7 |
| Mathematical sciences (number)......... | 15,420 | 10,900 | 2,100 | 950 | 1,460 |
| Male (percent)........................ | 87.5 | 92.2 | 74.5 | 67.6 | 84.0 |
| Female (percent)........ | 12.5 | 7.8 | 25.5 | 32.4 | 16.0 |
| Biological and agricultural sciences (number)........ | 68,640 | 29,420 | 10,950 | 9,690 | 18,570 |
| Male (percent).......................................... | 72.2 | 84.4 | 64.9 | 63.5 | 61.8 |
| Female (percent).......................................... | 27.8 | 15.6 | 35.1 | 36.5 | 38.2 |
| Health sciences (number)................................. | 9,210 | 3,900 | 2,500 | 1,220 | 1,600 |
| Male (percent)............... | 40.9 | 46.9 | 33.3 | 39.8 | 38.7 |
| Female (percent)......................................... | 59.1 | 53.1 | 66.7 | 60.2 | 61.3 |
| Physical and related sciences (number).... | 36,940 | 18,650 | 4,690 | 4,350 | 9,250 |
| Male (percent).............. | 86.7 | 92.5 | 76.9 | 79.4 | 83.5 |
| Female (percent)... | 13.3 | 7.5 | 23.1 | 20.6 | 16.5 |
| Social sciences (number). | 45,510 | 28,230 | 7,480 | 3,850 | 5,950 |
| Male (percent)....... | 71.7 | 78.1 | 62.1 | 56.7 | 62.7 |
| Female (percent)... | 28.3 | 21.9 | 37.9 | 43.3 | 37.3 |
| Psychology (number)...................................... | 27,190 | 13,490 | 3,710 | 3,460 | 6,530 |
| Male (percent)............................................. | 56.9 | 71.0 | 40.4 | 39.8 | 46.3 |
| Female (percent).... | 43.1 | 29.0 | 59.6 | 60.2 | 53.7 |
| Engineering (number)...................................... | 26,960 | 15,920 | 4,450 | 2,460 | 4,130 |
| Male (percent)............................................. | 93.5 | 96.6 | 87.8 | 90.9 | 89.2 |
| Female (percent).......................................... | 6.5 | 3.4 | 12.2 | 9.1 | 10.8 |

NOTE: $\quad$ Numbers are rounded to nearest ten. Details may not add to total because of rounding.

SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Field of doctorate/ primary work activity | Total | Secondary work activity |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | R\&D | Teaching | Management, <br> sales, and administration | Computer applications | Other | $\begin{array}{\|c} \text { No secondary } \\ \text { activity } \end{array}$ |
| All Fields |  |  |  |  |  |  |  |  |
| Total..................................................... | 233,180 | 100.0 | 42.9 | 21.0 | 17.1 | 5.0 | 7.6 | 6.4 |
| R\&D... | 91,380 | 100.0 | 26.0 | 41.4 | 16.6 | 6.5 | 4.4 | 5.1 |
| Teaching.... | 102,400 | 100.0 | 63.9 | D | 12.6 | 4.5 | 10.3 | 8.6 |
| Management, sales, and administration.... | 21,260 | 100.0 | 25.4 | 26.3 | 34.0 | 3.3 | 9.9 | 1.1 |
| Computer applications............................ | 3,020 | 100.0 | 57.6 | 17.4 | 14.4 | D | 5.8 | 4.8 |
| Other activities......................................... | 15,140 | 100.0 | 25.0 | 33.0 | 27.6 | 2.9 | 4.9 | 6.6 |
| Sciences |  |  |  |  |  |  |  |  |
| Total...................................................... | 206,220 | 100.0 | 41.6 | 21.1 | 17.5 | 4.8 | 8.1 | 6.8 |
| R\&D.... | 81,200 | 100.0 | 25.1 | 41.5 | 17.0 | 6.0 | 4.8 | 5.7 |
| Teaching.... | 89,610 | 100.0 | 62.3 | D | 12.9 | 4.6 | 11.1 | 9.2 |
| Management, sales, and administration.... | 18,670 | 100.0 | 25.5 | 25.6 | 33.8 | 3.3 | 10.7 | 1.2 |
| Computer applications.......................... | 2,670 | 100.0 | 56.4 | 19.0 | 14.4 | D | 5.9 | 4.3 |
| Other activities..................................... | 14,060 | 100.0 | 24.3 | 32.6 | 28.2 | 2.8 | 5.3 | 6.8 |
| Computer and information sciences |  |  |  |  |  |  |  |  |
| Total............................................................. | 3,320 | 100.0 | 48.1 | 25.3 | 7.0 | 9.6 | 3.7 | 6.4 |
| R\&D.................................................. | 1,060 | 100.0 | 20.3 | 73.3 | S | S | S | D |
| Teaching.............................................. | 1,790 | 100.0 | 63.8 | D | 5.9 | 12.6 | 5.9 | 11.8 |
| Management, sales, and administration.... | 310 | 100.0 | 46.9 | S | 20.4 | 18.0 | S | D |
| Computer applications.......................... | 140 | 100.0 | 61.8 | s | S | D | D | D |
| Other activities.................. | S | 100.0 | S | S | D | S | D | D |
| Mathematical sciences |  |  |  |  |  |  |  |  |
| Total.... | 15,420 | 100.0 | 47.4 | 20.2 | 10.9 | 8.4 | 6.5 | 6.6 |
| R\&D............................................. | 3,740 | 100.0 | 19.6 | 66.0 | 3.8 | 5.7 | 1.5 | 3.4 |
| Teaching................................................... | 9,860 | 100.0 | 63.3 | D | 9.3 | 10.0 | 8.8 | 8.6 |
| Management, sales, and administration.... | 1,070 | 100.0 | 13.7 | 26.7 | 42.2 | 8.2 | 5.8 | S |
| Computer applications............................ | 350 | 100.0 | 39.6 | 50.9 | S | D | S | D |
| Other activities.................................... | 400 | 100.0 | S | 46.7 | 36.8 | S | D | D |
| Biological and agricultural sciences |  |  |  |  |  |  |  |  |
| Total.............................................................. | 68,640 | 100.0 | 38.0 | 24.1 | 19.4 | 3.6 | 7.2 | 7.8 |
| R\&D................................................ | 38,800 | 100.0 | 28.9 | 33.8 | 20.9 | 4.2 | 5.0 | 7.3 |
| Teaching.......................................... | 18,030 | 100.0 | 60.6 | D | 13.3 | 3.6 | 11.8 | 10.7 |
| Management, sales, and administration.... | 5,290 | 100.0 | 36.0 | 22.5 | 28.2 | 2.6 | 10.2 | S |
| Computer applications.......................... | 720 | 100.0 | 58.5 | 23.2 | 12.6 | D | S | S |
| Other activities..................................... | 5,800 | 100.0 | 28.5 | 35.1 | 21.0 | 1.6 | 4.7 | 9.1 |

[^9]Table 21. Doctoral scientists and engineers employed in universities and 4-year colleges, by broad field of doctorate, primary work activity, and secondary work activity: 1997

| Field of doctorate/ primary work activity | Total | Secondary work activity Page 2 of 2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  | Total | R\&D | Teaching | Management, sales, and administration | Computer applications | Other | No secondary activity |
| Health sciences |  |  |  |  |  |  |  |  |
| Total................................................ | 9,210 | 100.0 | 36.0 | 22.2 | 21.8 | 4.1 | 11.9 | 4.0 |
| R\&D. | 2,980 | 100.0 | 19.8 | 45.9 | 19.9 | 7.9 | 4.1 | 2.3 |
| Teaching......................................... | 4,150 | 100.0 | 54.6 | D | 17.9 | 1.7 | 20.5 | 5.2 |
| Management, sales, and administration.. | 1,100 | 100.0 | 15.0 | 32.8 | 37.3 | S | 10.0 | S |
| Computer applications...... | 70 | 100.0 | S | S | S | D | D | D |
| Other activities..... | . 910 | 100.0 | 28.5 | 33.4 | 26.8 | S | S | 6.7 |
| Physical and related sciences |  |  |  |  |  |  |  |  |
| Total................. | 36,940 | 100.0 | 45.5 | 18.4 | 15.5 | 8.5 | 4.8 | 7.2 |
| R\&D........................................... | 16,000 | 100.0 | 31.2 | 35.1 | 13.4 | 12.1 | 3.1 | 5.0 |
| Teaching..... | 15,750 | 100.0 | 63.2 | D | 14.0 | 6.2 | 5.8 | 10.8 |
| Management, sales, and administration... | 3,040 | 100.0 | 31.9 | 23.0 | 31.2 | 5.4 | 8.0 | 0.5 |
| Computer applications................. | 760 | 100.0 | 61.2 | 8.2 | 14.4 | D | 7.5 | 8.7 |
| Other activities.... | 1,390 | 100.0 | 29.8 | 30.0 | 23.4 | 5.4 | 5.5 | 5.9 |
| Social sciences |  |  |  |  |  |  |  |  |
| Total.................................................... | 45,510 | 100.0 | 47.0 | 18.8 | 15.4 | 3.2 | 9.3 | 6.4 |
| R\&D.......... | 10,320 | 100.0 | 14.0 | 63.7 | 9.6 | 4.3 | 3.7 | 4.8 |
| Teaching.... | 28,220 | 100.0 | 64.9 | D | 11.9 | 3.0 | 11.9 | 8.4 |
| Management, sales, and administration... | 5,130 | 100.0 | 19.8 | 27.8 | 43.4 | 0.9 | 7.5 | S |
| Computer applications............... | 410 | 100.0 | 56.5 | S | 28.5 | D | S | S |
| Other activities... | 1,430 | 100.0 | 26.4 | 36.9 | 22.2 | 7.4 | 4.2 | S |
| Psychology |  |  |  |  |  |  |  |  |
| Total... | 27,190 | 100.0 | 34.6 | 20.9 | 22.3 | 3.1 | 13.3 | 5.9 |
| R\&D.. | 8,300 | 100.0 | 14.7 | 45.1 | 21.9 | 4.7 | 10.1 | 34 |
| Teaching..... | 11,820 | 100.0 | 59.0 | D | 15.4 | 2.8 | 15.0 | 7.9 |
| Management, sales, and administration.... | 2,730 | 100.0 | 15.1 | 28.4 | 26.1 | 2.9 | 23.7 | 3.8 |
| Computer applications.......................... | 240 | 100.0 | 55.9 | 22.7 | D | D | S | S |
| Other activities... | 4,100 | 100.0 | 16.1 | 26.9 | 41.7 | 1.3 | 7.9 | 6.0 |
| Engineering |  |  |  |  |  |  |  |  |
| Total................................................ | 26,960 | 100.0 | 52.8 | 20.0 | 14.5 | 6.5 | 3.4 | 2.8 |
| R\&D. | 10,180 | 100.0 | 33.0 | 40.9 | 13.6 | 10.4 | 1.7 | S |
| Teaching........................................ | 12,780 | 100.0 | 75.5 | D | 10.5 | 4.4 | 4.8 | 49 |
| Management, sales, and administration.... | 2,590 | 100.0 | 24.9 | 31.3 | 35.4 | 3.9 | 4.5 | D |
| Computer applications.......................... | 340 | 100.0 | 66.6 | S | S | D | S | S |
| Other activities.................................... | 1,080 | 100.0 | 33.4 | 38.9 | 19.2 | S | D | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
$D=$ The same work activity cannot be reported for both primary and secondary.
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.
Table 22. Employed doctoral scientists and engineers, by field of doctorate and primary work activity: 1997

| Field of doctorate | Total | Research and development |  |  |  |  | Teaching | Management, sales, and administration | Computer applications | Professionalsevvices | Other activity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Applied research | $\begin{aligned} & \text { Basic } \\ & \text { research } \end{aligned}$ | Development | Design |  |  |  |  |  |
| Total. | 518,440 | 210,840 | 100,730 | 69,220 | 28,790 | . 12,110 | 113,030 | 83,760 | 24,710 | 61,100 | 24,990 |
| Sciences... | 429,820 | 166,740 | 79,250 | 64,810 | 17,460 | 5,220 | 99,510 | 67,340 | 17,020 | 58,300 | 20,900 |
| Computer and mathematical sciences.... | 32,400 | 10,190 | 4,730 | 3,760 | 990 | 710 | 12,350 | 3,450 | 5,130 | 440 | 850 |
| Computer/information sciences..... | 8,000 | 2,950 | 1,500 | 830 | 390 | 240 | 1,850 | 1,070 | 2,060 | S | 60 |
| Mathematical sciences...................... | 24,400 | 7,240 | 3,230 | 2,940 | 600 | 480 | 10,500 | 2,380 | 3,070 | 420 | 790 |
| Biological and agricultural sciences.... | 124,600 | 65,680 | 26,120 | 34,380 | 4,680 | 500 | 21,220 | 18,200 | 2,340 | 10,780 | 6,380 |
| Agricultural food sciences......... | 15,670 | 8,220 | 5,340 | 1,450 | 1,360 | 70 | 1,910 | 3,260 | 320 | 870 | 1,100 |
| Biological sciences... | 104,630 | 55,570 | 19,250 | 32,770 | 3,150 | 390 | 18,470 | 14,060 | 1,910 | 9,690 | 4,940 |
| Environmental life sciences..... | 4,300 | 1,890 | 1,530 | 160 | 170 | S | 840 | 880 | 110 | 230 | 340 |
| Health sciences.................. | 17,180 | 5,960 | 4,290 | 860 | 720 | 100 | 4,540 | 3,300 | 200 | 2,570 | 620 |
| Physical and related sciences... | 105,250 | 52,510 | 25,270 | 15,600 | 8,920 | 2,720 | 18,320 | 18,570 | 6,250 | 3,790 | 5,820 |
| Chemistry except biochemistry...... | 54,220 | 27,640 | 14,320 | 6,550 | 5,830 | 950 | 8,990 | 10,760 | 1,490 | 2,100 | 3,250 |
| Earth/atmos/ocean sciences......... | 15,110 | 7,000 | 3,680 | 2,740 | 380 | 210 | 3,420 | 2,160 | 860 | 650 | 1,020 |
| Physics and astronomy......... | 35,920 | 17,870 | 7,280 | 6,310 | 2,710 | 1,570 | 5,910 | 5,640 | 3,900 | 1,040 | 1,560 |
| Social sciences... | 71,070 | 18,460 | 11,000 | 5,790 | 1,080 | 590 | 29,860 | 12,910 | 1,710 | 3,860 | 4,290 |
| Economics....................... | 20,080 | 7,500 | 4,960 | 2,020 | 270 | 240 | 6,850 | 3,210 | 570 | 1,030 | 930 |
| Political and related sciences. | 15,820 | 2,620 | 1,460 | 960 | 140 | 60 | 7,200 | 3,480 | 250 | 960 | 1,310 |
| Sociology... | 13,230 | 3,180 | 1,730 | 1,230 | 170 | 50 | 6,350 | 2,190 | 240 | 570 | 700 |
| Other social sciences.... | 21,940 | 5,170 | 2,850 | 1,580 | 500 | 230 | 9,460 | 4,030 | 640 | 1,290 | 1,340 |
| Psychology....... | 79,320 | 13,940 | 7,840 | 4,430 | 1,080 | 600 | 13,230 | 10,930 | 1,400 | 36,860 | 2,950 |
| Engineering.... | 88,620 | 44,100 | 21,480 | 4,410 | 11,330 | 6,880 | 13,520 | 16,420 | 7,700 | 2,800 | 4,090 |
| Aerospace/aeronautical engineering.... | 3,720 | 2,010 | 1,150 | 260 | 290 | 310 | 420 | 640 | 430 | 90 | 140 |
| Chemical engineering....................... | 12,280 | 6,900 | 3,270 | 510 | 2,260 | 850 | 1,300 | 2,580 | 580 | 320 | 600 |
| Civilarchitectural engineering.............. | 8,190 | 3,100 | 1,430 | 270 | 360 | 1,030 | 2,140 | 1,460 | 470 | 450 | 570 |
| Electrical/computer engineering........... | 23,750 | 11,160 | 4,880 | 1,160 | 3,410 | 1,710 | 3.430 | 4,850 | 3,010 | 470 | 840 |
| Materials/metallurgical engineering...... | 8,510 | 5,310 | 2,780 | 520 | 1,700 | 310 | 520 | 2,030 | 200 | 60 | 380 |
| Mechanical engineering.................... | 11,080 | 6,070 | 2,790 | 450 | 1,740 | 1,090 | 1,780 | 1,440 | 1,100 | 350 | 350 |
| Other engineering.................................. | 21,100 | 9,540 | 5,170 | 1,240 | 1,570 | 1,570 | 3,950 | 3,420 | 1,910 | 1,070 | 1,210 |


| NOTE: | $\begin{array}{l}\text { Numbers are rounded to nearest ten. } \\ \text { Defails may not add to total because of rounding. }\end{array}$ |
| :--- | :--- |
|  | KEY: |
| S=Suppressed due to too few cases (fewer than |  |

$\mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 23. Employed doctoral scientists and engineers, by occupation and primary work activity: 1997 :


## Table 24. Employed doctoral scientists and engineers, by employer location and broad field of doctorate: 1997

| Employer location | Total | Sciences | Computer and information sciences | Mathematical sciences | Biological and agricultural sciences | Health sciences | Physical and related sciences | Social sciences | Psychology | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Engineering |
| Total... | 518,440 | 319,130 | 25,950 | 19,400 | 97,550 | 72,240 | 43,370 | 60,630 | 69,740 | 129,570 |
| New England................ | [Percentage distribution] |  |  |  |  |  |  |  |  |  |
|  | 7.8 | 8.0 | 7.0 | 7.9 | 7.6 | 7.2 | 8.4 | 8.7 | 7.9 | 6.9 |
| Connecticut..... | 1.7 | 1.8 | 1.9 | 0.9 | 1.9 | 1.4 | 1.9 | 1.6 | 2.1 | 1.1 |
| Maine.................. | 0.4 | 0.4 | S | 0.3 | 0.4 | 0.6 | 0.3 | 0.7 | 0.5 | 0.3 |
| Massachusetts....... | 4.5 | 4.5 | 4.3 | 5.1 | 4.4 | 4.1 | 4.9 | 4.9 | 3.9 | 4.3 |
| New Hampshire....... | 0.4 | 0.4 | S | 0.8 | 0.2 | 0.5 | 0.5 | 0.4 | 0.5 | 0.5 |
| Rhode Island............ | 0.5 | 0.5 | S | 0.6 | 0.4 | 0.4 | 0.5 | 0.6 | 0.5 | 0.5 |
| Vermont................ | 0.3 | 0.4 | S | S | 0.4 | S | 0.2 | 0.6 | 0.4 | 0.2 |
| Middle Atlantic....... | 16.3 | 16.5 | 19.7 | 16.9 | 14.5 | 16.9 | 16.6 | 16.3 | 19.4 | 15.1 |
| New Jersey............ | 3.9 | 3.9 | 9.4 | 4.3 | 3.1 | 3.2 | 5.6 | 2.7 | 3.2 | 4.3 |
| New York........... | 7.7 | 8.0 | 8.1 | 8.7 | 6.8 | 8.1 | 6.5 | 8.6 | 11.3 | 6.2 |
| Pennsylvania. | 4.6 | 4.6 | 2.3 | 3.8 | 4.6 | 5.6 | 4.5 | 4.9 | 4.9 | 4.5 |
| East North Central....... | 13.7 | 13.4 | 11.2 | 14.6 | 13.2 | 15.7 | 12.7 | 14.1 | 13.4 | 15.1 |
| Illinois. | 4.1 | 4.1 | 7.9 | 4.0 | 4.0 | 4.7 | 4.0 | 4.6 | 3.7 | 3.9 |
| Indiana.................... | 1.5 | 1.5 | 1.5 | 1.6 | 1.4 | 2.1 | 1.2 | 1.8 | 1.6 | 1.3 |
| Michigan............. | 2.93.6 | 2.6 | 0.8 | 3.2 | 2.7 | 3.1 | 2.6 |  |  |  |
| Ohio..................... |  | 3.4 | 1.0 | 4.3 | 3.3 | 3.9 |  | 2.4 | 2.7 | 4.2 |
| Wisconsin.............. | 1.6 | 1.7 | S | 1.5 | 1.8 | 1.9 | 1.2 | 2.2 | 1.8 | 1.4 |
| West North Central.. | 6.3 | 6.7 | 5.5 | 6.6 | 8.0 | 6.9 | 5.0 | 7.3 | 6.3 | 4.5 |
| lowa........................ | 0.8 | 0.8 | 1.5 | 1.1 | 0.9 | 0.5 | 0.5 | 1.4 | 0.6 | 0.6 |
| Kansas................... | 0.7 | 0.8 | 1.0 | 1.0 | 1.0 | 0.9 | 0.4 | 0.8 | 0.7 |  |
| Minnesota. | 1.9 | 2.01.9 | $\begin{aligned} & 1.6 \\ & 1.3 \end{aligned}$ | 1.4 | 2.1 | 2.1 | 1.9 | 1.9 | 2.11.9 | 0.5 1.5 |
| Missouri.. | 1.8 |  |  | 2.2 | 2.3 | 1.7 | 1.7 | 1.8 |  | 1.5 1.3 |
| Nebraska..... | 0.60.3 | 0.6 | S | 0.6 | 0.9 | 0.8 | 0.3 | 0.9 | 0.4 | 0.3 |
| North Dakota......... |  | 0.3 | S | S | 0.4 | 0.4 | 0.1 | 0.2 | 0.3 |  |
| South Dakota....... | 0.2 | 0.2 | S | S | 0.3 | 0.5 | 0.1 | 0.2 | 0.3 0.2 | 0.2 0.1 |
| South Atlantic........ | 18.4 | 19.0 | 14.3 | 20.1 | 19.3 | 21.2 | 18.0 | 21.6 | 17.30.2 | 15.6 |
| Delaware.......... | 0.7 | 0.7 | S | S | 0.7 | 1.1 | 1.3 | 0.5 |  | 0.8 |
| District of Columbia... | 2.3 | 2.5 | 1.5 | 1.9 | 1.4 | 2.1 | 1.6 | 7.4 | 1.6 | 1.0 |
| Florida... | 2.6 | 2.5 | 1.9 | 1.6 | 2.2 | 3.2 | 1.9 | 2.6 | 4.0 | 2.8 |
| Georgia..................... | 1.9 | 2.0 | 2.0 | 2.1 | 2.1 | 2.7 | 1.6 | 2.2 | 1.9 | 1.5 |
| Maryland................... | 4.1 | 4.2 | 3.7 | 4.8 | 5.8 | 4.5 | 4.1 | 2.5 | 3.3 | 3.4 |
| North Carolina............ | 2.6 | 2.8 | 2.8 | 3.0 | 3.6 | 3.8 | 2.5 | 1.8 | 2.6 | 1.9 |
| South Carolina........... | 0.9 | 1.0 | S | 1.0 | 0.9 | 1.7 | 0.9 | 1.3 | 0.6 | 0.8 |
| Virginia..................... | 2.9 | 2.9 | 2.1 | 5.3 | 2.1 | 1.8 | 3.5 | 3.0 | 2.9 | 3.1 |
| West Virginia............ | 0.4 | 0.4 | S | 0.4 | 0.4 | 0.3 | 0.5 | 0.4 | 0.2 | 0.4 |
| East South Central........ | 4.3 | 4.4 | 2.2 | 5.7 | 5.0 | 5.8 | 3.5 | 4.3 | 4.2 | 3.8 |
| Alabama.... | 1.3 | 1.2 | S | 2.0 | 1.6 | 2.2 | 0.8 | 1.2 | 1.0 | 1.4 |
| Kentucky..... | 0.8 | 0.9 | 0.8 | 1.8 | 0.8 | 0.9 | 0.7 | 1.1 | 0.8 | 0.3 |
| Mississippi................. | 0.6 | 0.6 | S | 0.4 | 0.9 | 1.3 | 0.3 | 0.6 | 0.3 | 0.6 |
| Tennessee................ | 1.6 | 1.7 | 0.7 | 1.5 | 1.6 | 1.3 | 1.7 | 1.5 | 2.1 | 1.5 |

See explanatory information and SOURCE at end of table.


[^10]KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Employer location | Total | Scientists | Computer and information scientists | Mathematical scientists | Life and related scientists | $\left\|\begin{array}{c} \text { Physical and } \\ \text { related } \\ \text { scientists } \end{array}\right\|$ | Social and related scientists | Psychologists | Engineers | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Non-S\&E occupations |
| Total. | 518,440 | 319,130 | 25,950 | 19,400 | 97,550 | 72,240 | 43,370 | 60,630 | 69,740 | 129,570 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |  |
| New England. | 7.8 | 8.2 | 9.4 | 7.3 | 8.2 | 7.7 | 9.1 | 8.0 | 6.7 | 7.5 |
| Connecticut............ | 1.7 | 1.7 | 1.0 | 1.0 | 1.8 | 1.8 | 1.4 | 2.2 | 0.8 | 2.1 |
| Maine................... | 0.4 | 0.5 | 0.2 | 0.3 | 0.5 | 0.4 | 0.8 | 0.5 | 0.3 | 0.4 |
| Massachusetts....... | 4.5 | 4.7 | 6.4 | 4.1 | 4.9 | 4.4 | 5.3 | 3.9 | 4.4 | 4.0 |
| New Hampshire....... | 0.4 | 0.5 | 1.1 | 0.8 | 0.2 | 0.4 | 0.5 | 0.5 | 0.4 | 0.3 |
| Rhode Island.......... | 0.5 | 0.5 | 0.5 | 0.9 | 0.5 | 0.5 | 0.6 | 0.5 | 0.5 | 0.4 |
| Vermont............ | 0.3 | 0.3 | 0.3 | S | 0.4 | 0.2 | 0.6 | 0.4 | 0.3 | 0.3 |
| Middle Atlantic.......... | 16.3 | 16.5 | 20.2 | 16.5 | 14.5 | 15.9 | 16.4 | 19.0 | 14.7 | 16.6 |
| New Jersey............. | 3.9 | 3.6 | 9.1 | 3.5 | 2.8 | 4.4 | 2.2 | 2.9 | 4.6 | 4.3 |
| New York............. | 7.7 | 8.1 | 7.8 | 8.3 | 6.9 | 6.7 | 8.8 | 11.1 | 5.4 | 8.1 |
| Pennsylvania........ | 4.6 | 4.8 | 3.2 | 4.8 | 4.8 | 4.8 | 5.4 | 4.9 | 4.6 | 4.2 |
| East North Central........ | 13.7 | 13.3 | 10.7 | 15.1 | 13.1 | 13.0 | 14.6 | 13.4 | 15.9 | 13.6 |
| Illinois. | 4.1 | 4.0 | 5.4 | 4.0 | 4.0 | 3.7 | 4.5 | 3.5 | 3.8 | 4.5 |
| Indiana.................. | 1.5 | 1.5 | 0.7 | 1.7 | 1.4 | 1.4 | 2.2 | 1.7 | 1.3 | 1.4 |
| Michigan............. | 2.9 | 2.7 | 1.9 | 4.0 | 2.8 | 2.5 | 2.5 | 2.8 | 4.7 | 2.4 |
| Ohio..................... | 3.6 | 3.4 | 1.9 | 4.2 | 3.2 | 3.9 | 3.3 | 3.5 | 4.9 | 3.5 |
| Wisconsin...... | 1.6 | 1.6 | 0.7 | 1.2 | 1.7 | 1.4 | 2.1 | 1.9 | 1.3 | 1.8 |
| West North Central....... | 6.3 | 6.7 | 3.9 | 7.3 | 8.0 | 5.7 | 7.6 | 6.4 | 4.7 | 6.0 |
| lowa........................ | 0.8 | 0.9 | 0.8 | 1.2 | 1.0 | 0.7 | 1.4 | 0.6 | 0.6 | 0.6 |
| Kansas.................. | 0.7 | 0.8 | 0.7 | 0.9 | 1.1 | 0.4 | 0.8 | 0.7 | 0.6 | 0.7 |
| Minnesota............ | 1.9 | 1.9 | 1.0 | 2.0 | 2.0 | 1.9 | 2.2 | 2.0 | 1.6 | 2.0 |
| Missouri..... | 1.8 | 2.0 | 1.0 | 2.2 | 2.2 | 1.9 | 2.0 | 1.9 | 1.3 | 1.8 |
| Nebraska... | 0.6 | 0.7 | S | 0.6 | 1.1 | 0.5 | 0.7 | 0.5 | 0.3 | 0.5 |
| North Dakota.......... | 0.3 | 0.3 | S | 0.3 | 0.4 | 0.2 | 0.3 | 0.4 | 0.2 | 0.1 |
| South Dakota........... | 0.2 | 0.2 | 0.2 | S | 0.2 | 0.1 | 0.2 | 0.3 | S | 0.2 |
| South Atlantic........ | 18.4 | 19.0 | 16.4 | 21.2 | 19.7 | 18.7 | 21.5 | 16.8 | 14.6 | 19.1 |
| Delaware................. | 0.7 | 0.7 | 0.8 | S | 0.8 | 1.3 | 0.4 | 0.2 | 0.8 | 0.7 |
| District of Columbia... | 2.3 | 2.1 | 1.1 | 2.1 | 1.4 | 1.5 | 7.0 | 1.1 | 0.7 | 3.5 |
| Florida.............. | 2.6 | 2.4 | 1.5 | 1.5 | 2.4 | 1.7 | 2.3 | 3.9 | 2.7 | 2.9 |
| Georgia................... | 1.9 | 2.1 | 1.6 | 3.2 | 2.0 | 2.0 | 2.6 | 1.9 | 1.4 | 1.7 |
| Maryland.................. | 4.1 | 4.5 | 3.6 | 5.1 | 6.2 | 4.7 | 2.4 | 3.9 | 1.4 3.2 | 3.4 |
| North Carolina............ | 2.6 | 2.9 | 2.5 | 3.2 | 3.8 | 2.6 | 1.9 | 3.4 | 1.6 | 2.7 |
| South Carolina..... | 0.9 | 1.0 | S | 1.3 | 1.0 | 1.0 | 1.7 | 0.7 | 0.9 | 0.8 |
| Virginia... | 2.9 | 2.9 | 5.2 | 4.1 | 1.8 | 3.2 | 2.7 | 3.0 | 2.8 | 3.2 |
| West Virginia.. | 0.4 | 0.4 | S | 0.7 | 0.4 | 0.6 | 0.5 | 0.2 | 0.4 | 0.2 |
| East South Central........ | 4.3 | 4.5 | 2.7 | 6.3 | 5.0 | 3.8 | 5.3 | 4.2 | 3.9 | 3.9 |
| Alabama................. | 1.3 | 1.3 | 0.9 | 2.2 | 1.5 | 0.8 | 1.7 | 1.2 | 1.2 | 1.2 |
| Kentucky................... | 0.8 | 0.9 | 0.9 | 2.0 | 0.8 | 0.7 | 1.1 | 0.7 | 0.2 | 0.9 |
| Mississippi..... | 0.6 | 0.6 | 0.2 | 0.6 | 0.9 | 0.4 | 0.7 | 0.3 | 0.6 | 0.6 |
| Tennessee.............. | 1.6 | 1.8 | 0.7 | 1.6 | 1.8 | 1.9 | 1.8 | 2.0 | 1.9 | 1.2 |

[^11]| Employer location | Total | Scientists | Computer and information scientists | Mathematical scientists | Life and related scientists | Physical and related scientists | Social and related scientists | Psychologists | Engineers | Non-S\&E occupations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |  |
| West South Central.... | 7.9 | 7.6 | 8.0 | 6.8 | 8.2 | 8.3 | 6.1 | 7.0 | 9.9 | 7.5 |
| Arkansas............ | 0.4 | 0.5 | S | S | 0.6 | 0.5 | 0.6 | 0.4 | 0.3 | 0.4 |
| Louisiana... | 1.0 | 1.1 | 0.8 | 1.2 | 1.5 | 1.1 | 1.0 | 0.8 | 0.9 | 0.9 |
| Oklahoma...... | 0.9 | 0.8 | 0.4 | 0.4 | 1.0 | 0.8 | 1.0 | 0.9 | 1.3 | 0.8 |
| Texas................ | 5.5 | 5.2 | 6.6 | 4.9 | 5.2 | 5.9 | 3.5 | 4.9 | 7.4 | 5.3 |
| Mountain................ | 6.8 | 6.6 | 5.3 | 6.7 | 5.4 | 9.7 | 5.1 | 6.2 | 8.5 | 6.6 |
| Arizona. | 1.2 | 1.0 | 0.7 | 1.3 | 0.8 | 1.3 | 1.0 | 1.3 | 1.8 | 1.3 |
| Colorado.............. | 2.1 | 2.2 | 2.1 | 2.0 | 1.9 | 3.3 | 1.5 | 2.1 | 1.8 | 1.8 |
| Idaho................... | 0.4 | 0.4 | 0.3 | S | 0.4 | 0.4 | 0.4 | 0.3 | 0.5 | 0.4 |
| Montana........... | 0.3 | 0.4 | S | 0.5 | 0.5 | 0.3 | 0.3 | 0.4 | 0.1 | 0.3 |
| New Mexico... | 0.3 | 0.3 | 0.4 | 1.6 | 0.2 | 0.4 | 0.4 | 0.4 | 0.4 | 0.2 |
| Nevada............... | 1.4 | 1.3 | 0.8 | S | 0.6 | 3.0 | 0.5 | 0.7 | 2.4 | 1.4 |
| Utah................... | 0.9 | 0.8 | 0.8 | 0.9 | 0.9 | 0.5 | 0.9 | 0.7 | 1.5 | 1.0 |
| Wyoming............... | 0.2 | 0.2 | S | S | 0.1 | 0.4 | 0.2 | 0.2 | 0.2 | 0.1 |
| Pacific... | 18.1 | 17.2 | 23.4 | 12.3 | 17.5 | 16.8 | 13.7 | 18.8 | 21.0 | 18.6 |
| Alaska............ | 0.2 | 0.2 | S | S | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 |
| Califomia. | 13.6 | 12.8 | 18.2 | 8.3 | 11.9 | 13.5 | 9.5 | 14.9 | 17.0 | 13.8 |
| Hawaii................... | 0.5 | 0.5 | S | 0.4 | 0.8 | 0.4 | 0.6 | 0.4 | 0.3 | 0.5 |
| Oregon.............. | 1.2 | 1.2 | 1.6 | 1.7 | 1.6 | 0.7 | 0.8 | 1.0 | 1.2 | 1.3 |
| Washington........... | 2.6 | 2.5 | 3.4 | 1.7 | 3.0 | 1.9 | 2.5 | 2.3 | 2.2 | 2.9 |
| U.S. teritories and other areas. $\qquad$ | 0.4 | 0.4 | S | 0.6 | 0.4 | 0.4 | 0.5 | 0.2 | 0.3 | 0.4 |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
Since the SDR sample design does not include geography, the reliability of estimates in some states may be poor due to a small sample size.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 26. Employed doctoral scientists and engineers, by field of doctorate, racelethnicity, and sex: 1997

| Field of doctorate | Total |  |  | White |  |  | Black |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | 518,440 | 399,110 | 119,330 | 424,160 | 325,390 | 98,780 | 11,850 | 7,680 | 4,170 |
| Sciences.. | 429,820 | 315,680 | 114,140 | 364,140 | 268,840 | 95,290 | 10,570 | 6,520 | 4,060 |
| Computer and mathematical sciences.... | 32,400 | 27,850 | 4,560 | 24,930 | 21,460 | 3,470 | 520 | 430 | 90 |
| Computer/information sciences............ | 8,000 | 6,660 | 1,350 | 5,350 | 4,340 | 1,020 | 120 | 90 | S |
| Mathematical sciences....................... | 24,400 | 21,190 | 3,210 | 19,580 | 17,120 | 2,460 | 390 | 330 | 60 |
| Biological and agricultural sciences........ | 124,600 | 92,400 | 32,200 | 105,530 | 79,590 | 25,940 | 2,310 | 1,550 | 0 |
| Agricultural/ food sciences................... | 15,670 | 13,370 | 2,310 | 13,220 | 11,440 | 1,780 | 2,310 270 | 1,550 | S |
| Biological sciences.. | 104,630 | 75,170 | 29,460 | 88,470 | 64,660 | 23,810 | 1,960 | 250 | S |
| Environmental life sciences................. | 4,300 | 3,870 | 430 | 3,840 | 3,490 | 360 | 70 | 70 | S |
| Health sciences.. | 17,180 | 8,150 | 9,030 | 14,350 | 6,670 | 7,690 | 740 | 290 | 440 |
| Physical and related sciences............... | 105,250 | 92,680 | 12,570 | 86,230 | 76,930 | 9,300 | 1,510 | 1,370 | 140 |
| Chemistry except biochemistry............ | 54,220 | 45,940 | 8,280 | 43,530 | 37,490 | 6,050 | 1,040 | 1,370 920 | 140 -120 |
| Earth/atmos/ocean sciences............... | 15,110 | 13,140 | 1,970 | 13,500 | 11,750 | 1,740 | S | S | S |
| Physics and astronomy...................... | 35,920 | 33,600 | 2,330 | 29,200 | 27,690 | 1,510 | 430 | 410 | S |
| Social sciences... | 71,070 | 50,530 | 20,540 | 60,680 | 43,120 | 17,560 | 2,780 | 1,830 | 950 |
| Economics.. | 20,080 | 16,900 | 3,180 | 16,720 | 14,190 | 2,530 | 2,780 530 | 440 | 950 |
| Political and related sciences.. | 15,820 | 12,490 | 3,330 | 13,890 | 11,010 | 2,880 | 800 | 570 | 230 |
| Sociology......................................... | 13,230 | 8,220 | 5,010 | 11,580 | 7,250 | 4,880 | 690 | 570 | 23 |
| Other social sciences. | 21,940 | 12,920 | 9,030 | 18,490 | 10,660 | 7,830 | 770 | 370 | 400 |
| Psychology....................................... | 79,320 | 44,080 | 35,240 | 72,420 | 41,080 | 31,330 | 2,730 | 1,050 | 1,680 |
| Engineering.. | 88,620 | 83,430 | 5,190 | 60,030 | 56,550 | 3,480 | 1,280 | 1.170 | 110 |
| Aerospace/aeronautical engineering.... | 3,720 | 3,670 | 50 | 2,860 | 2,820 | S | 1,280 | 1,170 $S$ | S |
| Chemical engineering........................ | 12,280 | 11,610 | 670 | 8,670 | 8,200 | 470 | 140 | 110 | S |
| Civil/architectural engineering............. | 8,190 | 7,740 | 450 | 5,420 | 5,100 | 320 | 220 | 210 | S |
| Electrical/computer engineering........... | 23,750 | 22,610 | 1,140 | 15,540 | 14,880 | 660 | 320 | 290 | S |
| Materials/metallurgical engineering...... | 8,510 | 7,680 | 830 | 5,510 | 4,980 | 530 | 320 70 | 290 50 | S |
| Mechanical engineering..................... | 11,080 | 10,710 | 370 | 7,080 | 6,920 | 160 | 150 | 150 | S |
| Other engineering............................. | 21,100 | 19,420 | 1,680 | 14,950 | 13,650 | 1,300 | 350 | 320 | S |

Table 26. Employed doctoral scientists and enginëers, by field of doctorate, race/ethnicity, and sex: 1997
Page 2 of 2

| Field of doctorate | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total... | 68,860 | 56,320 | 12,540 | 11,790 | 8,420 | 3,380 | 1,770 | 1,300 | 470 |
| Sciences... | 43,360 | 32,250 | 11,110 | 10,110 | 6,890 | 3,220 | 1,640 | 1,180 | 460 |
| Computer and mathematical sciences.... | 6,210 | 5,340 | 870 | 720 | 590 | 120 | S | S | S |
| Computerlinformation sciences.... | 2,330 | 2,070 | 260 | 190 | 160 | S | S | S | S |
| Mathematical sciences....................... | 3,880 | 3,270 | 610 | 520 | 440 | 90 | S | S | S |
| Biological and agricultural sciences........ | 13,900 | 9,300 | 4,590 | 2,520 | 1,710 | 800 | 350 | 240 | 110 |
| Agricultural/ food sciences.... | 1,780 | 1,330 | 450 | 380 | 320 | 50 | S | S | S |
| Biological sciences..................... | 11,830 | 7,740 | 4,100 | 2,080 | 1,350 | 730 | 290 | 190 | 100 |
| Environmental life sciences........... | 280 | 230 | S | 60 | S | S | S | S | S |
| Health sciences................................. | 1,570 | 960 | 610 | 420 | 190 | 230 | 100 | S | 70 |
| Physical and related sciences................ | 14,920 | 12,140 | 2,780 | 2,270 | 1,930 | 340 | 330 | 310 | S |
| Chemistry except biochemistry.. | 8,070 | 6,240 | 1,840 | 1,360 | 1,100 | 270 | 210 | 200 | S |
| Earth/atmos/ocean sciences........ | 1,250 | 1,060 | 190 | 300 | 270 | S | S | S | S |
| Physics and astronomy.... | 5,600 | 4,850 | 750 | 610 | 560 | 50 | 90 | 90 | S |
| Social sciences...... | 5,250 | 3,860 | 1,390 | 1,910 | 1,330 | 590 | 440 | 390 | 50 |
| Economics........................... | 2,320 | 1,820 | 500 | 460 | 400 | 60 | 50 | 50 | S |
| Poilitical and related sciences....... | 710 | 580 | 130 | 360 | 270 | 90 | 50 | 50 | S |
| Sociology.............. | 550 | 290 | 260 | 370 | 210 | 160 | 50 | S | S |
| Other social sciences....................... | 1,670 | 1,180 | 500 | 730 | 460 | 280 | 290 | 260 | S |
| Psychology.......................................... | 1,510 | 640 | 870 | 2,280 | 1,140 | 1,140 | 390 | 180 | 210 |
| Engineering..................................... | 25,510 | 24,080 | 1,430 | 1,680 | 1,530 | 160 | 130 | 120 | S |
| Aerospace/aeronautical engineering.... | 750 | 740 | S | 70 | 70 | S | S | S | S |
| Chemical engineering............................ | 3,270 | 3,140 | 130 | 200 | 160 | S | S | S | S |
| Civil/architectural engineering.............. | 2,350 | 2,230 | 110 | 190 | 190 | S | S | S | S |
| Electricalcomputer engineering........... | 7,330 | 6,910 | 420 | 510 | 490 | S | S | S | S |
| Materials/metallurgical engineering...... | 2,740 | 2,470 | 260 | 190 | 160 | S | S | S | S |
| Mechanical engineering......................... | 3,670 | 3.470 | 200 | 170 | 160 | S | S | S | S |
| Other engineering............................ | 5,400 | 5,100 | 290 | 360 | 310 | 60 | S | S | S |

$\begin{array}{ll}\text { NOTE: } \quad \text { Numbers are rounded to nearest ten. } \\ & \text { Details may not add to total because of rounding. } \\ \text { 'Other race included with 'white'. }\end{array}$
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 27. Employed doctoral scientists and engineers, by occupation, racelethnicity, and sex: 1997

| Occupation |  |  |  | Page 1 of 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total |  |  | White |  |  | Black |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | 518,440 | 399,110 | 119,330 | 424,000 | 325,290 | 98,710 | 11,850 | 7,680 | 4,170 |
| Scientists..... | 319,130 | 237,030 | 82,100 | 265,260 | 197,900 | 67,360 | 7,080 | 4,520 | 2,560 |
| Computer and mathematical scientists... | 45,350 | 38,830 | 6,520 | 33,140 | 28,400 | 4,740 | 780 | 650 | 120 |
| Computer/information scientists... | 20,820 | 18,430 | 2,390 | 14,190 | 12,550 | 1,640 | 200 | 180 | S |
| Mathematical scientists.. | 5,920 | 4,660 | 1,260 | 4,620 | 3,660 | 960 | 140 | 120 | S |
| Postsecondary teachers, computer and mathematical sciences. | 18,610 | 15,740 | 2,870 | 14,320 | 12,180 | 2,150 | 440 | 360 | 80 |
| Life and related scientists... | 97,550 | 71,350 | 26,190 | 80,800 | 60,340 | 20,460 | 1,630 | 1,100 | 530 |
| Agricultural scientists.. | 9,170 | 7,790 | 1,380 | 7,850 | 6,730 | 1,120 | 90 | 80 | S |
| Biological scientists... | 55,590 | 38,340 | 17,250 | 43,750 | 31,060 | 12,690 | 780 | 490 | 290 |
| Forestry and conservation scientists.. | 1,230 | 1,080 | 150 | 1,090 | 950 | 140 | S | S | S |
| Postsecondary teachers, life and related sciences.... | 31,550 | 24,140 | 7,410 | 28,110 | 21,600 | 6,510 | - 710 | 490 | 230 |
| Physical and related scientists... | 72,240 | 63,120 | 9,130 | 59,150 | 52,380 | 6,770 | 1,160 | 1,020 | 40 |
| Chemists, except biochemistry. | 24,560 | 20,860 | 3,700 | 18,280 | 15,830 | 2,460 | 530 | 480 | 60 |
| Earth scientists.... | 8,830 | 7,950 | 880 | 7,530 | 6,800 | 720 | 80 | 80 | S |
| Physics and astronomers... | 13,280 | 12,360 | 920 | 11,120 | 10,540 | 580 | 100 | 90 | S |
| Other physical scientists... | 1,280 | 1,150 | 130 | 1,100 | 980 | 120 | S | S | S |
| Postsecondary teachers, physical and related sciences .... | 24,290 | 20,790 | 3,500 | 21,120 | 18,230 | 2,900 | 430 | 360 | 70 |
| Social scientists... | 43,370 | 31,560 | 11,810 | 36,550 | 26,560 | 9,990 | 1,700 | 1,170 | 540 |
| Economists... | 6,640 | 5,110 | 1,530 | 5,410 | 4,140 | 1,260 | 50 | S | S |
| Political scientists... | 870 | 720 | 150 | 740 | 610 | 130 | S | S | S |
| Sociologists and anthropologists.. | 3,310 | 1,670 | 1,640 | 2,970 | 1,480 | 1,480 | 150 | 60 | 90 |
| S\&T historians and other social scientists. | 1,840 | 910 | 930 | 1,620 | 860 | 770 | S | S | S |
| Postsecondary teachers, social and related sciences | 30,710 | 23,150 | 7,560 | 25,820 | 19,470 | 6,350 | 1,430 | 1,040 | 390 |
| Psychologists... | 60,630 | 32,180 | 28,450 | 55,620 | 30,220 | 25,400 | 1,820 | 580 | 1,240 |
| Psychologists., | 45,120 | 22,680 | 22,440 | 41,510 | 21,340 | 20,170 | 1,340 | 420 | 920 |
| Postsecondary teachers, psychology. | 15,510 | 9,500 | 6,010 | 14,110 | 8,890 | 5,220 | 480 | 160 | 320 |
| Engineers.... | 69,740 | 65,110 | 4,630 | 47,980 | 44,700 | 3,280 | 930 | 840 | 00 |
| Aerospace/aeronautical engineers. | 3,990 | 3,750 | 240 | 3,110 | 2,910 | 3,280 | , | S | 0 |
| Chemical engineers... | 6,730 | 6,210 | 520 | 4.580 | 4,240 | 340 | S | S | S |
| Civil and architectural engineers... | 3,350 | 3,120 | 230 | 1,910 | 1,750 | 160 | 70 | 70 | S |
| Electric and related engineers.. | 13,500 | 12,820 | 680 | 8,710 | 8,390 | 320 | 150 | 130 | S |
| Industrial engineers...... | 1,220 | 1,010 | 210 | 800 | 640 | 160 | S | S | S |
| Mechanical engineers.. | 7,820 | 7,600 | 220 | 4,700 | 4,620 | 80 | 90 | 90 | S |
| Other engineers... | 16,000 | 14,620 | 1,390 | 11,110 | 10,030 | 1,090 | 120 | 110 | S |
| Postsecondary teachers, engineering... | 17,140 | 16,000 | 1,140 | 13,060 | 12,120 | 950 | 410 | 370 | S |
| Non-S\&E occupations... | 129,570 | 96,970 | 32,590 | 110,770 | 82,690 | 28,070 | 3,840 | 2,330 | 1,510 |
| Managers, administrators, etc. | 71,010 | 58,410 | 12,600 | 61,170 | 50,180 | 11,000 | 2,070 | 1,420 | 660 |
| Health and related occupations.. | 14,440 | 9,910 | 4,530 | 11,870 | 8,160 | 3,710 | 450 | 230 | 220 |
| Teachers, except S\&E postsecondary teachers................ | 20,780 | 10,990 | 9,790 | 17,710 | 9,250 | 8,460 | 810 | 380 | 430 |
| Social services and related occupations.......................... | 2,020 | 1,250 | 760 | 1,760 | 1,090 | 680 | 110 | 70 | S |
| Technologists, etc... | 4,570 | 4,180 | 380 | 3,580 | 3,310 | 270 | 70 | 70 | S |
| Sales and marketing occupations..... | 5,230 | 4,390 | 840 | 4,310 | 3,610 | 700 | 60 | S | S |
| Other non-S\&E occupations.......................................... | 11,530 | 7,840 | 3,690 | 10,370 | 7,110 | 3,260 | 270 | 120 | 150 |

[^12]Table 27. Employed doctoral scientists and engineers, by occupation, race/ethnicity, and sex: 1997

| Occupation | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total......................................................................... | 68,860 | 56,320 | 12,540 | 11,790 | 8,420 | 3,380 | 1,770 | 1,300 | 470 |
| Scientists..................................................................... | 37,740 | 28,420 | 9,310 | 7,720 | 5,280 | 2,450 | 1,190 | 830 | 360 |
| Computer and mathematical scientists.............................. | 10,290 | 8,810 | 1,480 | 1,030 | 860 | 170 | 110 | 110 | S |
| Computerfinformation scientists..................................... | 5,950 | 5,270 | 680 | 400 | 350 | 50 | 80 | 80 | S |
| Mathematical scientists.................................................... | 1,010 | 760 | 250 | 150 | 110 | S | S | S | S |
| Postsecondary teachers, computer and mathematical sciences. | 3,330 | 2,770 | 560 | 480 | 400 | 90 | S | S | S |
| Life and related scientists.............................................. | 12,840 | 8,450 | 4,400 | 1,990 | 1,300 | 690 | 270 | 170 | 110 |
| Agricultural scientists... | 1,010 | 820 | 190 | 200 | 140 | 60 | S | S | S |
| Biological scientists......... | 9,670 | 5,900 | 3,770 | 1,190 | 790 | 400 | 190 | 100 | 90 |
| Forestry and conservation scientists... | 70 | 60 | S | S | S | S | S | S | S |
| Postsecondary teachers, life and related sciences.. | 2,090 | 1,660 | 430 | 590 | 360 | 230 | S | S | S |
| Physical and related scientists.... | 9,960 | 8,080 | 1,890 | 1,740 | 1.440 | 300 | 200 | 180 | S |
| Chemists, except biochemistry. | 5,220 | 4,120 | 1,090 | 510 | 420 | 90 | S | S | S |
| Earth scientists.... | 920 | 800 | 120 | 260. | 230 | S | 50 | 50 | S |
| Physics and astronomers.. | 1,840 | 1,550 | 300 | 200 | 180 | S | S | S | S |
| Other physical scientists.......................................... | 120 | 110 | S | S | S | S | S | S | S |
| Postsecondary teachers, physical and related sciences ..... | 1,870 | 1,500 | 370 | 720 | 570 | 150 | 130 | 110 | S |
| Social scientists.... | 3,500 | 2,660 | 840 | 1,320 | 920 | 400 | 250 | 210 | S |
| Economists.... | 950 | 730 | 220 | 200 | 170 | S | S | S | S |
| Political scientists... | 80 | 60 | S | S | S | S | S | S | S |
| Sociologists and anthropologists........ | 120 | 80 | S | 70 | S | S | S | S | S |
| S\&T historians and other social scientists..................... | 140 | 60 | 90 | S | S | S | S | S | S |
| Postsecondary teachers, social and related sciences ... | 2,220 | 1,740 | 470 | 990 | 680 | 310 | 210 | 180 | S |
| Psychologists.... | 1,150 | 440 | 720 | 1,650 | 770 | 880 | 360 | 160 | 190 |
| Psychologists............................................... | 790 | 250 | 540 | 1,150 | 550 | 600 | 300 | 120 | 180 |
| Postsecondary teachers, psychology............................ | 370 | 190 | 180 | 500 | 220 | 280 | 60 | S | S |
| Engineers..................................................... | 19,300 | 18,160 | 1,140 | 1,400 | 1,290 | 110 | 120 | 120 | S |
| Aerospace/aeronautical engineers...... | 780 | 740 | S | 50 | 50 | S | S | S | S |
| Chemical engineers........................ | 1,990 | 1,810 | 170 | 110 | 110 | S | S | S | S |
| Civil and architectural engineers... | 1,280 | 1,210 | 70 | 100 | 90 | S | S | S | S |
| Electric and related engineers... | 4,400 | 4,070 | 330 | 220 | 220 | S | S | S | S |
| Industrial engineers......... | 360 | 320 | S | 60 | S | S | S | S | S |
| Mechanical engineers. | 2,930 | 2,800 | 130 | 90 | 80 | S | S | S | S |
| Other engineers.......... | 4,450 | 4,190 | 260 | 270 | 240 | S | 50 | S | S |
| Postsecondary teachers, engineering............................. | 3,120 | 3,020 | 100 | 510 | 460 | 60 | S | S | S |
| Non-S\&E occupations............. | 11,820 | 9,740 | 2,080 | 2,670 | 1,850 | 820 | 460 | 360 | 100 |
| Managers, administrators, etc.. | 6,070 | 5,420 | 650 | 1,450 | 1,190 | 260 | 250 | 210 | S |
| . Heatth and related occupations.................................. | 1,780 | 1,310 | 470 | 300 | 170 | 130 | S | S | S |
| - Teachers, except S\&E postsecondary teachers...... | 1,580 | 1,030 | 560 | 530 | 240 | 290 | 140 | 90 | 50 |
| Social services and related occupations........... | 70 | 70 | S | 70 | S | S | S | S | S |
| Technologists, etc.................................... | 890 | 790 | 100 | S | S | S | S | S | S |
| Sales and marketing occupations................................. | 740 | 680 | 60 | 120 | 60 | 60 | S | S | S |
| Other non-S\&E occupations............................................... | 700 | 460 | 240 | 180 | 140 | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
'Other race included with 'white'.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 28. Employed doctoral scientists and engineers, by demographic characteristics and broad field of doctorate 1997

| Characteristics | Total | Sciences | Computer and information sciences | Mathematical sciences | Biological and agricultural sciences | Health sciences | Physical and related sciences | Social sciences | Psychology | Engineering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total... | 518,440 | 429,820 | 8,000 | 24,400 | 124,600 | 17,180 | 105,250 | 71,070 | 79,320 | 88,620 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |  |
| Sex: |  |  |  |  |  |  |  |  |  |  |
| Male.. | 77.0 | 73.4 | 83.2 | 86.8 | 74.2 | 47.4 | 88.1 | 71.1 | 55.6 | 94.1 |
| Female. | 23.0 | 26.6 | 16.8 | 13.2 | 25.8 | 52.6 | 11.9 | 28.9 | 44.4 | 5.9 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |  |
| White. | 81.8 | 84.7 | 66.9 | 80.2 | 84.7 | 83.5 | 81.9 | 85.3 | 91.3 | 67.7 |
| Black. | 2.3 | 2.5 | 1.5 | 1.6 | 1.9 | 4.3 | 1.4 | 3.9 | 3.4 | 1.4 |
| Asian or Pacific Islander.. | 13.3 | 10.1 | 29.1 | 15.9 | 11.2 | 9.2 | 14.2 | 7.4 | 1.9 | 28.8 |
| Hispanic.................................... | 2.3 | 2.4 | 2.4 | 2.1 | 2.0 | 2.4 | 2.2 | 2.7 | 2.9 | 1.9 |
| American Indian/Alaskan Native.... | 0.3 | 0.4 | S | S | 0.3 | 0.6 | 0.3 | 0.6 | 0.5 | 0.1 |
| Age: |  |  |  |  |  |  |  |  |  |  |
| Under 35... | 12.4 | 11.5 | 26.3 | 12.5 | 12.9 | 7.5 | 14.0 | 7.5 | 8.7 | 16.5 |
| 35 to 39. | 14.2 | 13.4 | 27.8 | 11.2 | 14.6 | 11.1 | 15.1 | 10.5 | 11.4 | 18.3 |
| 40 to 44. | 16.7 | 17.0 | 21.0 | 13.0 | 19.6 | 19.7 | 14.7 | 14.9 | 18.3 | 15.0 |
| 45 to 49. | 17.1 | 18.1 | 16.2 | 15.3 | 17.7 | 23.5 | 13.7 | 20.2 | 22.5 | 12.5 |
| 50 to 54. | 17.2 | 17.7 | 7.5 | 21.8 | 15.9 | 18.9 | 16.4 | 20.4 | 19.1 | 15.2 |
| 55 to 59. | 12.1 | 12.1 | 0.8 | 15.9 | 10.2 | 11.2 | 14.4 | 14.7 | 9.9 | 12.4 |
| 60 to 64. | 5.9 | 5.7 | S | 6.6 | 5.4 | 5.2 | 6.3 | 6.5 | 5.1 | 6.8 |
| 65 to 75... | 4.3 | 4.5 | S | 3.5 | 3.9 | 2.8 | 5.4 | 5.2 | 5.0 | 3.3 |
| Citizenship status: |  |  |  |  |  |  |  |  |  |  |
| U.S. total.. | 90.6 | 92.4 | 72.0 | 87.9 | 92.5 | 93.6 | 90.5 | 92.2 | 98.1 | 82.0 |
| U.S. native............................. | 79.2 | 83.3 | 58.9 | 75.0 | 83.4 | 84.3 | 78.6 | 83.3 | 94.0 | 59.4 |
| U.S. naturalized.................. | 11.4 | 9.1 | 13.1 | 12.9 | 9.1 | 9.3 | 11.9 | 9.0 | 4.1 | 22.6 |
| Non-U.S. total............................. | 9.4 | 7.6 | 28.0 | 12.1 | 7.5 | 6.4 | 9.5 | 7.8 | 1.9 | 18.0 |
| Non-U.S., permanent resident..... | 7.7 | 6.3 | 24.6 | 10.0 | 6.1 | 5.1 | 8.1 | 6.1 | 1.7 | 14.5 |
| Non-U.S., temporary resident....... | 1.7 | 1.3 | 3.4 | 2.1 | 1.4 | 1.3 | 1.4 | 1.6 | 0.3 | 3.5 |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates....................... | 9.2 | 8.7 | 20.2 | 7.5 | 9.0 | 14.2 | 7.3 | 8.7 | 8.1 | 11.5 |
| 1993-94 graduates..................... | 8.0 | 7.7 | 21.2 | 6.0 | 8.0 | 11.3 | 6.8 | 7.1 | 7.6 | 9.4 |
| 1990-92 graduates........................ | 11.0 | 10.6 | 20.7 | 9.8 | 11.0 | 14.7 | 9.8 | 9.1 | 10.8 | 12.8 |
| 1985-89 graduates.................... | 15.9 | 15.9 | 23.2 | 11.8 | 16.2 | 19.4 | 14.9 | 15.0 | 17.3 | 15.9 |
| 1980-84 graduates................... | 14.5 | 15.3 | 11.8 | 11.8 | 16.0 | 16.3 | 12.5 | 16.5 | 18.1 | 10.8 |
| 1970-79 graduates.................... | 27.7 | 28.3 | 2.8 | 33.5 | 27.0 | 19.6 | 28.9 | 33.2 | 27.7 | 24.8 |
| 1960-69 graduates...................... | 11.7 | 11.4 | S | 18.4 | 11.1 | 3.6 | 16.2 | 8.9 | 8.2 | 13.2 |
| Pre-1960 graduates...................... | 2.1 | 2.2 | S | 1.2 | 1.8 | 0.8 | 3.6 | 1.5 | 2.2 | 1.6 |
| Place of birth: |  |  |  |  |  |  |  |  |  |  |
| U.S........................................ | 78.4 | 82.4 | 57.1 | 73.9 | 82.7 | 83.5 | 77.8 | 82.5 | 93.0 | 58.7 |
| Europe..................................... | 3.8 | 3.7 | 4.9 | 5.8 | 3.1 | 2.9 | 4.2 | 4.6 | 2.6 | 4.1 |
| Asia............. | 14.2 | 10.4 | 33.0 | 16.8 | 11.2 | 9.8 | 14.6 | 8.3 | 1.7 | 32.5 |
| North America........................... | 0.9 | 1.0 | 1.7 | 0.7 | 1.0 | 0.7 | 0.9 | 1.1 | 1.2 | 0.6 |
| Central America... | 0.3 | 0.3 | S | 0.3 | 0.3 | 0.3 | 0.5 | 0.2 | 0.3 | 0.3 |
| Caribbean..... | 0.4 | 0.4 | S | 0.2 | 0.3 | S | 0.4 | 0.5 | 0.5 | 0.5 |
| South America... | 0.7 | 0.6 | 1.6 | 0.7 | 0.6 | 0.6 | 0.7 | 0.8 | 0.4 | 0.9 |
| Africa..... | 1.1 | 0.9 | 0.9 | 1.2 | 0.8 | 1.7 | 0.9 | 1.7 | 0.3 | 2.2 |
| Oceania..... | 0.1 | 0.1 | S | 0.3 | 0.1 | 0.3 | S | 0.3 | 0.1 | 0.1 |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 29. Employed doctoral scientists and engineers, by demographic characteristics and broad occupation: 1997

| Characteristics | Total | Scientists | Computer and information scientists | Mathematical scientists | .Life and related scientists | Physical and related scientists | Social and related scientists | Psychologists | Engineers | Non-S\&E occupations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total... | 518,440 | 319,130 | 25,950 | 19,400 | 97,550 | 72,240 | 43,370 | 60,630 | 69,740 | 129,570 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |  |
| Sex: |  |  |  |  |  |  |  |  |  |  |
| Male............................................. | 77.023.0 | 74.3 | 87.0 | 83.716.3 | 73.1 | 87.4 | $72.8$ | $\begin{aligned} & 53.1 \\ & 46.9 \end{aligned}$ | 93.4 | $\begin{aligned} & 74.8 \\ & 25.2 \end{aligned}$ |
| Female........................................ |  | 25.7 | 13.0 |  | 26.9 | 12.6 |  |  | 6.6 |  |
| Race/ethnicity: |  |  | 68.7 | 79.0 | 82.8 | 81.9 | 84.3 | 91.7 | 68.8 | 85.5 |
| White... | 81.8 | 83.1 |  |  |  |  |  |  |  |  |
| Black.... | 2.3 | 2.2 | 1.5 | 2.0 | 1.7 | 1.6 | 3.9 | 3.0 | 1.3 | 3.0 |
| Asian or Pacific Islander................. | 13.3 | 11.8 | 27.6 | 16.2 | 13.2 | 13.8 | 8.1 | 1.9 | 27.7 | 9.1 |
| Hispanic................................... | 2.3 | 2.40.4 | 2.0 | 2.7 | 2.0 | 2.4 | 3.0 | 2.7 | 2.0 | 2.1 |
| American Indian/Alaskan Native...... | 2.3 |  | 0.3 | 0.2 | 0.3 | 0.3 | 0.6 | 0.6 | 0.2 | 0.4 |
| Age: |  | 14.0 | 18.6 | 14.7 | 15.5 | 15.9 | 10.1 | 9.7 | 17.4 | 5.8 |
| Under 35. | 12.4 |  |  |  |  |  |  |  |  |  |
| 35 to 39... | 14.2 | 15.4 | 19.0 | 13.9 | 17.0 | 16.7 | 12.5 | 12.4 | 18.7 | 8.8 15.4 |
| 40 to 44... | 16.7 | 17.5 | 16.6 | 14.8 | 19.6 | 15.9 | 16.5 | 18.0 | 15.4 | 15.420.4 |
| 45 to 49... | 17.1 | 16.9 | 15.8 | 16.0 | 16.3 | 13.5 | 18.4 | 21.7 | 12.2 |  |
| 50 to 54. | 17.2 | 15.6 | 17.4 | 16.4 | 13.9 | 13.7 | 17.7 | 18.3 | 14.2 22.8 |  |
| 55 to $59 .$. | 12.1 | 10.9 | 8.6 | 13.8 | 9.2 | 12.6 | 13.6 | 9.8 | 11.4 | 15.5 |
| 60 to 64. | 5.94.3 | 5.4 | 3.11.0 | 6.73.8 | 4.93.6 | 6.3 | 6.44.9 | 4.95.3 | $3.7$ | 6.64.7 |
| 65 to 75.............. |  | 4.3 |  |  |  | 5.4 |  |  |  |  |
| Citizenship status: | 90.6 | 90.6 | 78.7 | 86.4 | 90.6 | 89.5 | 90.9 | 97.9 | 81.8 | 95.5 |
| U.S. total... |  |  |  |  |  |  |  |  |  |  |
| U.S. native......... | 79.2 | 81.1 | 62.4 | 73.9 | 81.2 | 78.2 | 81.8 | 94.0 | 61.3 | 84.2 |
| U.S. naturalized........................... | 11.4 | 9.5 | 16.2 | 12.6 | 9.4 | 11.3 | 9.1 | 3.9 | 20.5 | 11.34.5 |
| Non-U.S. total...................... | 9.47.7 | 9.4 | 21.3 | 13.6 | 9.4 | 10.5 | 9.1 | 2.1 | 18.2 |  |
| Non-U.S., permanent resident...... |  | 7.6 | 17.44.0 | 10.8 | 7.4 | 8.81.6 | $7.1$ | $1.8$ | 14.9 | 4.54.00.6 |
| Non-U.S., temporary resident........ | 1.7 | 1.8 |  | 2.8 | 1.9 |  | 2.0 | $0.3$ | 3.3 |  |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates. | 9.2 | 10.1 | 13.1 | 9.2 | 11.2 | 8.6 | 10.3 | 8.8 | 12.3 | 5.2 |
| 1993-94 graduates........................ | 8.0 | 8.8 | 12.2 | 7.2 | 9.6 | 7.4 | 8.0 | 8.6 | 9.4 | 5.4 |
| 1990-92 graduates.......... | 11.0 | 11.6 | 14.0 | 12.0 | 12.5 | 10.7 | 10.2 | 11.1 | 13.3 | 8.2 |
| 1985-89 graduates...................... | 15.9 | 16.6 | 16.2 | 14.0 | 16.8 | 16.7 | 15.5 | 17.9 | 16.2 | 14.0 |
| 1980-84 graduates....................... | 14.5 | 14.8 | 13.2 | 13.5 | 14.8 | 13.5 | 15.3 | 17.0 | 10.4 | 16.2 |
| 1970-79 graduates....................... | 27.7 | 25.4 | 23.8 | 26.1 | 23.4 | 24.9 | 30.4 | 26.1 | 23.7 | 35.4 |
| $1960-69$ graduates....................... | 11.7 | 10.7 | 6.9 | 16.8 | 9.7 | 14.8 | 8.9 | 8.2 | 12.8 | 13.5 |
| Pre-1960 graduates.............. | 2.1 | 2.1 | 0.6 | 1.1 | 2.0 | 3.4 | 1.4 | 2.2 | 1.8 | 2.1 |
| Place of birth: |  |  |  |  |  |  |  |  |  |  |
| U.S............................................... | 78.4 | 80.2 | 61.6 | 72.8 | 80.5 | 77.3 | 80.9 | 93.0 | 60.5 | 83.5 |
| Europe..................................... | 3.8 | 3.9 | 4.8 | 5.8 | 3.5 | 4.2 | 4.6 | 2.6 | 3.9 | 3.5 |
| Asia.......................................... | 14.2 | 12.4 | 29.8 | 16.9 | 13.1 | 14.7 | 9.3 | 1.8 | 31.2 | 9.6 |
| North America............................. | 0.9 | 1.0 | 0.8 | 0.7 | 1.0 | 1.0 | 1.4 | 1.1 | 0.7 | 0.9 |
| Central America.......................... | 0.3 | 0.4 | S | 0.5 | 0.3 | 0.6 | 0.2 | 0.4 | 0.4 | 0.2 |
| Carribean.................................. | 0.4 | 0.4 | 0.4 | S | 0.2 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 |
| South America............................ | 0.7 | 0.7 | 0.7 | 1.0 | 0.6 | 0.6 | 0.9 | 0.4 | 0.7 | 0.7 |
| Africa............ | 1.1 | 1.0 | 1.6 | 1.9 | 0.7 | 1.0 | 1.9 | 0.2 | 2.0 | 1.1 |
| Oceania.. | 0.1 | 0.1 | S | 0.3 | 0.1 | 0.1 | 0.3 | S | 0.1 | 0.2 |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 30. Employed doctoral scientists and engineers, by demographic characteristics and citizenship status: 1997

| Characteristic | Total | U.S. Citizen |  |  | Non-U.S. Citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | Temporary resident |
| Total............... | 518,440 | 469,790 | 410,560 | 59,230 | 48,650 | 39,930 | 8,720 |
|  | [Percentage distribution] |  |  |  |  |  |  |
| Sex: |  |  |  |  |  |  |  |
| Male.................................................... | 77.0 | 76.6 | 75.8 | 82.6 | 80.5 | 80.5 | 80.7 |
| Female................................................ | 23.0 | 23.4 | 24.2 | 17.4 | 19.5 | 19.5 | 19.3 |
| Race/ethnicity: |  |  |  |  |  |  |  |
| White................................................... | 81.8 | 87.4 | 94.5 | 38.2 | 27.7 | 27.6 | 28.4 |
| Black..................................................... | 2.3 | 2.1 | 2.0 | 3.3 | 3.7 | 3.6 | 4.0 |
| Asian or Pacific Islander..................... | 13.3 | 8.0 | 1.5 | 53.3 | 64.3 | 64.6 | 62.7 |
| Hispanic................................ | 2.3 | 2.1 | 1.6 | 5.1 | 4.2 | 4.1 | 4.8 |
| American Indian/Alaskan Native................. | 0.3 | 0.4 | 0.4 | 0.1 | S | S | S |
| Age: |  |  |  |  |  |  |  |
| Under 35............................................. | 12.4 | 9.8 | 10.4 | 6.2 | 36.8 | 30.1 | 67.2 |
| 35 to 39....................................................... | 14.2 | 12.7 | 12.8 | 12.0 | 28.9 | 31.1 | 19.0 |
| 40 to 44................................................. | 16.7 | 16.6 | 16.5 | 17.7 | 17.2 | 18.8 | 9.7 |
| 45 to 49.................................................. | 17.1 | 18.2 | 18.0 | 19.2 | 7.1 | 8.4 | 1.3 |
| 50 to 54.................................................. | 17.2 | 18.5 | 18.5 | 18.3 | 5.0 | 5.7 | 1.8 |
| 55 to 59.................................................. | 12.1 | 13.1 | 13.1 | 13.1 | 2.9 | 3.4 | 0.8 |
| 60 to 64......................................................... | 5.9 | 6.4 | 6.3 | 7.1 | 1.3 | 1.5 | S |
| 65 to 75................................................. | 4.3 | 4.7 | 4.4 | 6.4 | 0.8 | 1.0 | S |
| Employer location: |  |  |  |  |  |  |  |
| New England............ | 7.8 | 7.7 | 7.7 | 7.7 | 9.3 | 9.2 | 9.7 |
| Middle Atlantic...... | 16.3 | 16.0 | 15.6 | 19.0 | 19.2 | 20.1 | 15.1 |
| East North Central.... | 13.7 | 13.5 | 13.6 | 13.0 | 15.4 | 15.7 | 14.5 |
| West North Central.... | 6.3 | 6.4 | 6.7 | 4.3 | 5.2 | 5.2 | 5.3 |
| South Atlantic............ | 18.4 | 18.8 | 18.8 | 18.7 | 14.4 | 14.0 | 16.0 |
| East South Central................................ | 4.3 | 4.4 | 4.7 | 2.7 | 2.9 | 3.1 | 2.0 |
| West South Central..... | 7.9 | 7.8 | 7.9 | 6.9 | 8.9 | 8.5 | 10.6 |
| Mountain.............................................. | 6.8 | 7.0 | 7.4 | 4.0 | 5.6 | 5.9 | 4.4 |
| Pacific...................................................... | 18.1 | 18.0 | 17.3 | 23.2 | 18.4 | 17.9 | 20.7 |
| U.S. territories and other areas.................. | 0.4 | 0.3 | 0.3 | 0.5 | 0.6 | 0.3 | 1.8 |
| Place of birth: |  |  |  |  |  |  |  |
| U.S....................................................... | 78.4 | 86.4 | 98.7 | 0.7 | 1.1 | 0.9 | 2.1 |
| Europe................................................... | 3.8 | 2.7 | 0.4 | 18.7 | 13.8 | 13.8 | 13.8 |
| Asia................................................ | 14.2 | 8.5 | 0.5 | 64.1 | 69.5 | 70.1 | 66.3 |
| North America........................................ | 0.9 | 0.6 | 0.1 | 4.0 | 4.2 | 4.1 | 4.9 |
| Central America................................... | 0.3 | 0.2 | 0.1 | 1.2 | 1.3 | 1.2 | 1.7 |
| Caribbean............................................ | 0.4 | 0.3 | 0.0 | 2.6 | 0.9 | 1.1 | S |
| South America........................................ | 0.7 | 0.4 | 0.1 | 2.7 | 3.3 | 3.2 | 3.5 |
| Africa.................................................. | 1.1 | 0.8 | 0.1 | 5.6 | 4.9 | 4.6 | 6.1 |
| Oceania.............................................. | 0.1 | 0.1 | 0.0 | 0.4 | 1.0 | 0.9 | 1.5 |

[^13]Table 31. Employed doctoral scientists and engineers, by demographic characteristics and sector of employment: 1997

| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Selfemployed | Private not-forprofit | Federal government | Page 1 of 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | State and local government | Other sector |
| Total. | 518,440 | 233,180 | 13,650 | 165,040 | 25,100 | 26,330 | 38,070 | 15,450 | 1,620 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |
| Sex: |  |  |  |  |  |  |  |  |  |
| Male....................................... | 77.0 | 74.9 | 58.5 | 84.8 | 63.4 | 67.0 | 81.2 | 69.8 | 74.2 |
| Female. | 23.0 | 25.1 | 41.5 | 15.2 | 36.6 | 33.0 | 18.8 | 30.2 | 25.8 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |
| White. | 81.8 | 83.2 | 83.6 | 76.2 | 93.0 | 86.4 | 86.2 | 83.8 | 73.1 |
| Black........................................ | 2.3 | 2.8 | 4.6 | 1.4 | 1.1 | 2.9 | 2.0 | 3.6 | 1.9 |
| Asian or Pacific Islander........ | 13.3 | 11.0 | 8.2 | 20.4 | 3.5 | 8.4 | 9.5 | 10.0 | 17.5 |
| Hispanic. | 2.3 | 2.7 | 3.0 | 1.8 | 1.9 | 2.1 | 2.0 | 2.0 | 6.9 |
| American Indian/Alaskan Native.... | 0.3 | 0.4 | 0.6 | 0.2 | 0.5 | 0.2 | 0.3 | 0.6 | S |
| Age: |  |  |  |  |  |  |  |  |  |
| Under 35.... | 12.4 | 13.3 | 7.8 | 14.2 | 3.3 | 11.6 | 9.9 | 5.3 | 7.5 |
| 35 to 39... | 14.2 | 14.2 | 10.4 | 16.3 | 8.2 | 14.6 | 11.8 | 11.0 | 14.6 |
| 40 to 44.................................... | 16.7 | 16.3 | 14.3 | 17.5 | 13.2 | 17.9 | 16.5 | 18.9 | 23.2 |
| 45 to 49. | 17.1 | 15.6 | 22.8 | 16.9 | 21.4 | 19.4 | 18.3 | 24.7 | 17.6 |
| 50 to 54... | 17.2 | 16.4 | 18.9 | 16.8 | 19.3 | 16.9 | 21.0 | 21.4 | 20.4 |
| 55 to 59. | 12.1 | 12.8 | 14.8 | 10.6 | 13.5 | 11.6 | 13.4 | 10.9 | 12.8 |
| 60 to 64. | 5.9 | 6.8 | 6.5 | 4.8 | 8.0 | 3.9 | 6.0 | 3.7 | S |
| 65 to 75................................... | 4.3 | 4.6 | 4.5 | 3.0 | 13.1 | 4.1 | 3.0 | 4.0 | 3.6 |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total. | 90.6 | 90.4 | 95.7 | 87.5 | 96.9 | 93.7 | 96.6 | 95.4 | 67.7 |
| U.S. native... | 79.2 | 80.6 | 85.7 | 72.5 | 88.9 | 85.7 | 85.5 | 83.5 | 55.1 |
| U.S. naturalized.. | 11.4 | 9.7 | 10.0 | 15.0 | 8.1 | 8.0 | 11.1 | 11.9 | 12.7 |
| Non-U.S. total. | 9.4 | 9.6 | 4.3 | 12.5 | 3.1 | 6.3 | 3.4 | 4.6 | 32.3 |
| Non-U.S. permanent resident....... | 7.7 | 7.8 | 3.8 | 10.4 | 3.0 | 4.9 | 2.6 | 3.7 | 20.3 |
| Non-U.S. temporary resident........ | 1.7 | 1.8 | 0.5 | 2.1 | S | 1.4 | 0.8 | 0.9 | 11.9 |
| Employer location: |  |  |  |  |  |  |  |  |  |
| New England......... | 7.8 | 8.8 | 5.2 | 8.0 | 7.2 | 9.3 | 2.6 | 6.3 | 5.3 |
| Middle Atlantic............. | 16.3 | 15.3 | 19.7 | 19.7 | 18.9 | 17.5 | 4.2 | 15.8 | 9.9 |
| East North Central... | 13.7 | 15.7 | 11.5 | 13.5 | 9.0 | 15.2 | 6.9 | 10.2 | S |
| West North Central.................. | 6.3 | 8.1 | 4.4 | 5.1 | 4.6 | 5.8 | 2.2 | 6.9 | S |
| South Atlantic.. | 18.4 | 15.9 | 21.1 | 14.7 | 15.5 | 18.4 | 50.2 | 15.0 | 67.9 |
| East South Central...................... | 4.3 | 6.0 | 3.2 | 2.8 | 2.7 | 2.9 | 3.9 | 2.4 | S |
| West South Central................ | 7.9 | 8.8 | 7.9 | 8.3 | 6.3 | 4.3 | 4.3 | 7.1 | 3.5 |
| Mountain................................. | 6.8 | 6.7 | 6.1 | 5.9 | 7.2 | 7.2 | 11.1 | 8.4 | S |
| Pacific............................. | 18.1 | 14.2 | 20.3 | 21.6 | 28.6 | 19.4 | 14.5 | 27.2 | 8.6 |
| U.S. teritories and other areas.... | 0.4 | 0.5 | 0.4 | 0.2 | S | S | 0.3 | 0.8 | 3.6 |

[^14]Table 31. Employed doctoral scientists and engineers, by demographic characteristics and sector of employment: 1997

| Characteristics | Total | Universities and 4 -year colleges | Other educational institutions | Private-forprofit | Selfemployed | Private not-forproft | Federal govemment | Page 2 of 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | State and local govemment | Other sector |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | * |
| U.S................ | 78.4 | 79.9 | 85.2 | 71.8 | 88.2 | 84.3 | 84.6 | 81.9 | 50.8 |
| Europe............ | 3.8 | 4.1 | 2.6 | 3.5 | 4.3 | 3.5 | 3.2 | 3.4 | 9.3 |
| Asia... | 14.2 | 12.1 | 8.7 | 21.4 | 4.1 | 8.2 | 9.7 | 10.7 | 24.3 |
| North America.... | 0.9 | 1.0 | 0.5 | 0.9 | 1.7 | 1.0 | 0.5 | 1.5 | S |
| Central America. | 0.3 | 0.4 | S | 0.2 | 0.3 | 0.3 | 0.2 | 0.6 | S |
| Caribbean............... | 0.4 | 0.4 | 0.7 | 0.4 | 0.3 | 0.6 | 0.2 | 0.4 | S |
| South America... | 0.7 | 0.7 | 0.7 | 0.6 | 0.7 | 0.6 | 0.5 | 0.6 | 6.3 |
| Africa. | 1.1 | 1.3 | 1.4 | 1.0 | 0.3 | 1.5 | 1.0 | 0.8 | 4.4 |
| Oceania... | 0.1 | 0.2 | S | 0.1 | S | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding
'Other' race included with 'white'.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.
Page 1 of 2

| Characteristics | Total | Research and development |  |  |  |  | Teaching | Management, sales and administration | Computer applications | Professional senvices | Other activities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Applied research | Basic research | Development | Design |  |  |  |  |  |
| Total. | 518,440 | 210,840 | 100,730 | 69,220 | 28,790 | 12,110 | 113,030 | 83,760 | 24,710 | 61,100 | 24,990 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |  |  |
| Sex: |  |  |  |  |  |  |  |  |  |  |  |
| Male............................................ | 77.0 | 80.7 | 80.8 | 76.5 | 86.5 | 90.4 | 73.9 | 81.0 | 89.3 | 60.3 | 74.7. |
| Female................................ | 23.0 | 19.3 | 19.2 | 23.5 | 13.5 | 9.6 | 26.1 | 19.0 | 10.7 | 39.7 | 25.3 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |  |  |
| White........................................... | 81.8 | 78.0 | 79.0 | 79.3 | 73.5 | 73.2 | 85.1 | 85.0 | 68.9 | 89.2 | 83.4 |
| Black................................... | 2.3 | 1.6 | 1.8 | 1.5 | 1.3 | 1.4 | 3.2 | 2.6 | 1.6 | 2.5 | 2.7 |
| Asian or Pacific Islander................ | 13.3 | 18.1 | 16.7 | 16.6 | 24.0 | 23.8 | 8.4 | 10.1 | 27.4 | 5.6 | 10.8 |
| Hispanic...... | 2.3 | 2.1 | 2.3 | 2.4 | 1.2 | 1.5 | 2.8 | 2.0 | 1.7 | 2.2 | 2.6 |
| American Indian/Alaskan Native ... | 0.3 | 0.2 | 0.3 | 0.2 | S | S | 0.4 | 0.4 | 0.4 | 0.6 | 0.5 |
| Age: |  |  |  |  |  |  |  |  |  |  |  |
| Under 35...................................... | 12.4 | 17.9 | 16.1 | 21.6 | 15.6 | 16.2 | 9.5 | 4.8 | 17.9 | 8.6 | 8.0 |
| 35 to 39...................................... | 14.2 | 17.7 | 16.9 | 18.7 | 18.9 | 15.4 | 12.3 | 9.4 | 18.2 | 11.6 | 12.1 |
| 40 to 44.................................. | 16.7 | 18.3 | 18.5 | 18.6 | 18.3 | 14.8 | 14.5 | 15.2 | 16.3 | 18.6 | 13.6 |
| 45 to 49...................................... | 17.1 | 15.8 | 16.9 | 14.4 | 14.1 | 17.8 | 15.8 | 20.7 | 15.6 | 20.5 | 16.1 |
| 50 to 54... | 17.2 | 13.3 | 14.2 | 10.8 | 15.2 | 16.4 | 18.8 | 22.8 | 16.9 | 19.0 | 20.1 |
| 55 to 59....................................... | 12.1 | 9.2 | 9.4 | 8.4 | 9.2 | 11.8 | 15.1 | 16.7 | 8.2 | 11.3 | 14.4 |
| 60 to 64................................ | 5.9 | 4.6 | 4.5 | 4.1 | 5.6 | 5.0 | 8.2 | 6.4 | 5.2 | 4.9 | 8.0 |
| 65 to 75.................................... | 4.3 | 3.3 | 3.4 | 3.3 | 3.2 | 2.7 | 5.7 | 3.9 | 1.5 | 5.6 | 7.6 |
| Citizenship status: |  |  |  |  |  |  |  |  |  |  |  |
| U.S. total....................................... | 90.6 | 86.6 | 87.9 | 85.4 | 85.8 | 84.8 | 92.9 | 95.4 | 80.3 | 96.6 | 93.7 |
| U.S. native.............................. | 79.2 | 74.0 | 76.0 | 74.1 | 68.8 | 69.0 | 82.8 | 83.7 | 64.9 | 88.9 | . 82.1 |
| U.S. naturalized........................ | 11.4 | 12.6 | 11.9 | 11.3 | 17.0 | 15.8 | 10.0 | 11.7 | 15.5 | 7.7 | 11.6 |
| Non-U.S. total................................. | 9.4 | 13.4 | 12.1 | 14.6 | 14.2 | 15.2 | 7.1 | 4.6 | 19.7 | 3.4 | 6.3 |
| Non-U.S., permanent resident.... | 7.7 | 10.6 | 9.5 | 11.6 | 11.7 | 11.0 | 6.3 | 3.9 | 16.5 | 3.1 | 5.4 |
| Non-U.S., temporary resident..... | 1.7 | 2.8 | 2.5 | 3.0 | 2.5 | 4.3 | 0.9 | 0.7 | 3.1 | 0.4 | 0.8 |

See explanatory information and SOURCE at end of table.
Table 32. Employed doctoral scientists and engineers, by demographic characteristics and primary work aĉtivity: 1997


Table 33. Employed doctoral scientists and engineers, by demographic characteristics, racelethnicity, and sex: 1997
Page 1 of 2

| Characteristics | Total |  |  | White |  |  | Black |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Male | Female | Total | Male | Female | Tọtal | Male | Female |
| Total........ | 518,440 | 399,110 | 119,330 | 424,000 | 325,290 | 98,710 | 11,850 | 7,680 | 4,170 |


| Age: |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Under 35. | 12.4 | 11.3 | 15.9 | 10.5 | 9.4 | 14.2 | 9.5 | 7.4 | 13.3 |
| 35 to 39...................................... | 14.2 | 13.3 | 17.3 | 13.0 | 12.1 | 15.8 | 15.9 | 15.7 | 16.1 |
| 40 to 44..... | 16.7 | 15.7 | 19.8 | 16.4 | 15.3 | 20.1 | 19.1 | 18.3 | 20.7 |
| 45 to 49.... | 17.1 | 16.5 | 19.3 | 17.8 | 17.0 | 20.3 | 19.7 | 17.7 | 23.5 |
|  | 17.2 | 17.9 | 14.9 | 18.3 | 19.1 | 15.9 | 17.5 | 18.9 | 14.9 |
| 55 to 59. | 12.1 | 13.6 | 7.3 | 13.0 | 14.6 | 7.9 | 8.6 | 10.3 | 5.5 |
| 60 to 64... | 5.9 | 6.8 | 3.0 | 6.3 | 7.2 | 3.2 | 5.5 | 6.7 | 3.2 |
| 65 to $75 .$. | 4.3 | 4.9 | 2.3 | 4.7 | 5.4 | 2.6 | 4.2 | 5.0 | 2.8 |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total............. | 90.6 | 90.2 | 92.1 | 96.8 | 96.7 | 97.3 | 84.7 | 78.8 | 95.8 |
| U.S. native....... | 79.2 | 77.9 | 83.4 | 91.5 | 91.0 | 92.9 | 68.5 | 58.7 | 86.5 |
| U.S. naturalized....... | 11.4 | 12.3 | 8.7 | 5.3 | 5.6 | 4.4 | 16.3 | 20.0 | 9.3 |
| Non-U.S. total........................... | 9.4 | 9.8 | 7.9 | 3.2 | 3.3 | 2.7 | 15.3 | 21.2 | 4.2 |
| Non-U.S., permanent resident..... | 7.7 | 8.1 | 6.5 | 2.6 | 2.7 | 2.2 | 12.3 | 17.0 | 3.5 |
| Non-U.S., temporary resident.......... | 1.7 | 1.8 | 1.4 | 0.6 | 0.6 | 0.5 | 3.0 | 4.2 | 0.7 |
| Employer location: |  | , |  |  |  |  |  |  |  |
| New England...... | 7.8 | 7.6 | 8.6 | 7.9 | 7.6 | 8.9 | 6.5 | 7.5 | 4.6 |
| Middle Atlantic..... | 16.3 | 15.9 | 17.8 | 15.9 | 15.4 | 17.6 | 17.6 | 18.3 | 16.2 |
| East North Central. | 13.7 | 13.8 | 13.5 | 13.8 | 13.9 | 13.6 | 11.8 | 11.5 | 12.4 |
| West North Central...... | 6.3 | 6.4 | 5.9 | 6.6 | 6.8 | 6.1 | 2.8 | 3.2 | 2.1 |
| South Allantic............ | 18.4 | 18.2 | 19.1 | 18.6 | 18.6 | 18.8 | 30.4 | 28.3 | 34.4 |
| East South Central... | 4.3 | 4.4 | 3.8 | 4.5 | 4.6 | 3.9 | 6.6 | 7.0 | 5.8 |
| West South Central...... | 7.9 | 8.3 | 6.6 | 7.7 | 8.1 | 6.4 | 8.7 | 8.6 | 9.0 |
| Mountain. | 6.8 | 7.2 | 5.8 | 7.3 | 7.6 | 6.2 | 2.9 | 4.3 | S |
| Pacific.......... | 18.1 | 17.9 | 18.7 | 17.5 | 17.2 | 18.2 | 12.6 | 11.4 | 14.9 |
| U.S. territories and other areas.......... | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 | 0.2 | S | 0.1 | S |
| Place of birth: |  |  |  |  |  |  |  |  |  |
| U.S................ | 78.4 | 77.2 | 82.5 | 90.7 | .90.3 | 92.0 | 68.3 | 58.5 | 86.3 |
| Europe. | 3.8 | 3.9 | 3.4 | 4.4 | 4.6 | 4.0 | 0.7 | 0.8 | S |
| Asia................ | 14.2 | 15.3 | 10.6 | 2.6 | 2.8 | 1.7 | 0.5 | 0.7 | S |
| North America.... | 0.9 | 0.9 | 1.1 | 1.1 | 1.1 | 1.3 | S | 0.1 | S |
| Central America..... | 0.3 | 0.3 | 0.3 | 0.1 | 0.1 | 0.0 | 0.4 | 0.1 | S |
| Caribbean.... | 0.4 | 0.4 | 0.5 | 0.1 | 0.1 | 0.0 | 6.7 | 6.7 | 6.7 |
| South America... | 0.7 | 0.6 | 0.9 | 0.2 | 0.2 | 0.3 | 0.9 | 0.7 | 1.2 |
| Africa........................................ | 1.1 | 1.3 | 0.6 | 0.7 | 0.8 | 0.5 | 22.6 | 32.5 | 4.4 |
| Oceania..................................... | S | S | 0.2 | 0.2 | 0.1 | 0.2 | S | S | S |

[^15]Table 33. Employed doctoral scientists and engineers, by demographic characteristics, racelethnicity, and sex: 1997

| Characteristios |  |  |  |  |  |  |  |  | age 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total... | 68,860 | 56,320 | 12,540 | 11,790 | 8,420 | 3,380 | 1,770 | 1,300 | 470 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |
| Age: |  |  |  |  |  |  |  |  |  |
| Under 35...................................... | 24.5 | 23.2 | 30.3 | 12.9 | 10.7 | 18.6 | 8.2 | 8.1 | S |
| 35 to 39........................................ | 20.4 | 18.8 | 27.7 | 20.5 | 18.7 | 25.0 | 8.0 | 8.6 | S |
| 40 to 44....................................... | 17.6 | 17.7 | 17.4 | 18.4 | 17.7 | 20.2 | 12.6 | 11.0 | 17.2 |
| 45 to 49........................................ | 13.1 | 13.7 | 10.5 | 15.5 | 15.3 | 16.0 | 12.3 | 8.5 | 23.0 |
| 50 to 54....................................... | 10.5 | 11.1 | 7.9 | 15.9 | 16.9 | 13.3 | 28.2 | 29.9 | 23.3 |
| 55 to 59........................................ | 7.4 | 8.2 | 3.9 | 11.1 | 14.0 | 4.0 | 18.0 | 17.9 | 18.1 |
| 60 to 64....................................... | 4.1 | 4.6 | 1.9 | 3.8 | 4.4 | 2.1 | 6.8 | 8.4 | S |
| 65 to 75....................................... | 2.3 | 2.7 | 0.5 | 2.0 | 2.4 | S | 6.0 | 7.6 | S |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total. | 54.6 | 55.5 | 50.6 | 82.6 | 80.8 | 87.1 | 98.7 | 98.3 | 100.0 |
| U.S. native. | 8.7 | 7.7 | 13.3 | 57.0 | 55.7 | 60.0 | 95.5 | 94.9 | 97.1 |
| U.S. naturalized........................... | 45.9 | 47.7 | 37.4 | 25.6 | 25.1 | 27.1 | 3.2 | S | S |
| Non-U.S. total. | 45.5 | 44.5 | 49.4 | 17.4 | 19.2 | 12.9 | S | S | S |
| Non-U.S., permanent resident........ | 37.5 | 36.6 | 41.5 | 13.9 | 15.9 | 8.8 | S | S | S |
| Non-U.S., temporary resident......... | 7.9 | 8.0 | 7.9 | 3.5 | 3.3 | 4.1 | S | S | S |
| Employer location: |  |  |  |  |  |  |  |  |  |
| New England................................. | 8.0 | 7.7 | 9.3 | 6.5 | 7.7 | 3.4 | 5.5 | 6.8 | S |
| Middle Atlantic............................... | 18.9 | 18.7 | 19.9 | 14.5 | 13.7 | 16.4 | 7.2 | 5.9 | 10.8 |
| East North Central.......................... | 14.1 | 14.0 | 14.9 | 10.2 | 11.2 | 7.6 | 12.2 | 13.0 | S |
| West North Central......................... | 5.2 | 5.1 | 5.4 | 4.2 | 4.3 | 3.8 | 7.5 | 7.6 | S |
| South Atlantic................................ | 15.1 | 15.0 | 15.7 | 19.6 | 18.0 | 23.5 | 12.0 | 10.2 | 17.0 |
| East South Central.......................... | 2.7 | 2.8 | 2.4 | 3.4 | 4.1 | 1.7 | 9.9 | 11.4 | S |
| West South Central........................ | 8.0 | 8.5 | 5.6 | 11.3 | 11.3 | 11.5 | 16.4 | 19.3 | S |
| Mountain...................................... | 4.5 | 4.7 | 3.5 | 7.5 | 7.8 | 6.8 | 14.7. | 16.0 | 11.2 |
| Pacific.......................................... | 23.2 | 23.2 | 23.2 | 16.2 | 15.1 | 18.9 | 14.7 | 9.8 | 28.0 |
| U.S. territories and other areas......... | 0.3 | 0.3 | S | 6.7 | 6.8 | 6.6 | S | S | S |
| Place of birth: |  |  |  |  |  |  |  |  |  |
| U.S............................................. | 8.0 | 7.0 | 12.4 | 55.3 | 53.5 | 59.6 | 95.7 | 95.6 | 95.9 |
| Europe........................................ | 0.4 | 0.4 | 0.4 | 2.9 | 3.4 | 1.8 | S | S | S |
| Asia. | 90.7 | 91.7 | 86.3 | 1.5 | 1.4 | 1.9 | 4.1 | 4.4 | S |
| North America............................... | 0.1 | 0.2 | S | S | S | S | S | S | S |
| Central America............................. | S | S | S | 11.2 | 12.0 | 9.2 | S | S | S |
| Caribbean..................................... | 0.2 | 0.2 | S | 7.9 | 7.7 | 8.5 | S | S | S |
| South America.............................. | 0.2 | 0.1 | 0.4 | 20.5 | 21.1 | 19.0 | S | S | S |
| Africa.......................................... | 0.2 | 0.2 | 0.4 | 0.7 | 0.9 | S | S | S | S |
| Oceania...................................... | 0.1 | 0.1 | S | S | S | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding. 'Other' race included with 'white'.

KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases)
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 34. Employed doctoral scientists and engineers, by employment-related characteristics, racelethnicity, and sex: 1997

| Characteristics |  |  |  |  |  |  |  |  | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total |  |  | White |  |  | Black |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | 518,440 | 399,110 | 119,330 | 424,000 | 325,290 | 98,710 | 11,850 | 7,680 | 4,170 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |
| Sector of employment: |  |  |  |  |  |  |  |  |  |
| Universities and 4-year colleges............... | 45.0 | 43.8 | 49.0 | 45.7 | 44.8 | 48.7 | 55.2 | 54.7 | 56.1 |
| Other educational institutions..................... | 2.6 | 2.0 | 4.7 | 2.7 | 2.1 | 4.8 | 5.3 | 4.1 | 7.4 |
| Private-for-profit...... | 31.8 | 35.1 | 21.0 | 29.7 | 32.6 | 19.8 | 19.2 | 23.1 | 12.0 |
| Self-employed.......... | 4.8 | 4.0 | 7.7 | 5.5 | 4.5 | 8.8 | 2.4 | 2.1 | 3.0 |
| Private not-for-profit........................ | 5.1 | 4.4 | 7.3 | 5.4 | 4.6 | 7.7 | 6.5 | 6.8 | 5.9 |
| Federal government............................. | 7.3 | 7.7 | 6.0 | 7.7 | 8.3 | 5.9 | 6.4 | 5.5 | 8.2 |
| State and local government..................... | 3.0 | 2.7. | 3.9 | 3.1 | 2.8 | 3.9 | 4.7 | 3.6 | 6.9 |
| Other sector........... | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | S | S | S |
| Primary work activity: |  |  |  |  |  |  |  |  |  |
| R\&D.................................................. | 40.7 | 42.6 | 34.1 | 38.8 | 40.9 | 31.7 | 28.5 | 31.4 | 23.2 |
| Applied research............................. | 19.4 | 20.4 | 16.2 | 18.8 | 19.8 | 15.4 | 15.0 | 16.6 | 12.1 |
| Basic research... | 13.4 | 13.3 | 13.6 | 12.9 | 13.1 | 12.5 | 9.0 | 9.8 | 7.5 |
| Development.................................... | 5.6 | 6.2 | 3.3 | 5.0 | 5.6 | 2.8 | 3.1 | 3.2 | 2.9 |
| Design.............................. | 2.3 | 2.7 | 1.0 | 2.1 | 2.5 | 0.9 | 1.4 | 1.8 | S |
| Teaching......................................... | 21.8 | 20.9 | 24.7 | 22.7 | 21.8 | 25.5 | 30.9 | 32.0 | 29.0 |
| Management, sales, and administration...... | 16.2 | 17.0 | 13.3 | 16.8 | 17.7 | 13.8 | 18.7 | 17.3 | 21.2 |
| Computer applications........................... | 4.8 | 5.5 | 2.2 | 4.0 | 4.7 | 1.8 | 3.3 | 4.2 | 1.7 |
| Professional sevices............................ | 11.8 | 9.2 | 20.3 | 12.8 | 10.1 | 21.7 | 12.9 | 9.2 | 19.6 |
| Other activities..................................... | 4.8 | 4.7 | 5.3 | 4.9 | 4.7 | 5.6 | 5.7 | 5.9 | 5.4 |
| Federal support: |  |  |  |  |  |  |  |  |  |
| Receiving support............ | 26.4 | 26.8 | 24.9 | 26.3 | 26.8 | 24.4 | 25.4 | 26.0 | 24.3 |
| Not receiving support............................. | 73.6 | 73.2 | 75.1 | 73.7 | 73.2 | 75.6 | 74.6 | 74.0 | 75.7 |
| Relationship between degree and job: |  |  |  |  |  |  |  |  |  |
| Closely related...................................... | 69.3 | 68.2 | 73.0 | 69.9 | 68.7 | 73.8 | 71.9 | 68.9 | 77.4 |
| Somewhat related:................................ | 23.4 | 24.1 | 20.9 | 22.8 | 23.6 | 20.2 | 21.4 | 23.0 | 18.4 |
| Not related........................................... | 7.3 | 7.7. | 6.0 | 7.3 | 7.7 | 6.0 | 6.7 | 8.1 | 4.2 |

[^16]Table 34. Employed doctoral scientists and engineers, by employment-related characteristics, race/ethnicity, and sex: 1997

| Characteristics |  |  |  |  |  |  |  |  | Page 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total....................................................... | 68,860 | 56,320 | 12,540 | 11,790 | 8,420 | 3,380 | 1,770 | 1,300 | 470 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |
| Sector of employment: |  |  |  |  |  |  |  |  |  |
| Universities and 4-year colleges................. | 37.2 | 34.9 | 47.4 | 52.6 | 51.1 | 56.2 | 48.9 | 54.5 | 33.4 |
| Other educational institutions................ | 1.6 | 1.5 | 2.4 | 3.4 | 1.4 | 8.4 | 5.0 | 4.0 | S |
| Private-for-profit.......... | 48.8 | 51.7 | 35.6 | 25.5 | 30.4 | 13.1 | 23.3 | 25.3 | 17.9 |
| Self-employed....................................... | 1.3 | 1.2 | 1.3 | 4.0 | 3.2 | 5.9 | 7.4 | 6.6 | S |
| Private not-for-profit... | 3.2 | 2.9 | 4.5 | 4.6 | 3.8 | 6.5 | 2.8 | S | S |
| Federal govemment.............................. | 5.3 | 5.2 | 5.6 | 6.3 | 7.0 | 4.8 | 6.8 | 5.7 | S |
| State and local govemment..................... | 2.2 | 2.2 | 2.6 | 2.6 | 2.1 | 3.8 | 5.3 | S | 14.2 |
| Other sector........................................ | 0.4 | 0.4 | 0.6 | 1.0 | 0.8 | S | S | S | S |
| Primary work activity: |  |  |  |  |  |  |  |  |  |
| R\&D.................................................... | 55.3 | 54.5 | 58.7 | 38.3 | 42.2 | 28.6 | 23.8 | 22.8 | 26.4 |
| Applied research................................ | 24.4 | 24.5 | 24.0 | 19.8 | 21.0 | 16.9 | 14.6 | 15.5 | 12.1 |
| Basic research... | 16.7 | 14.6 | 25.8 | 14.0 | 15.9 | 9.4 | 6.9 | 5.8 | S |
| Development..................................... | 10.0 | 10.7 | 7.2 | 2.9 | 3.2 | 1.9 | S | S | S |
| Design............. | 4.2 | 4.7 | 1.7 | 1.6 | 2.0 | S | S | S | S |
| Teaching.............................................. | 13.8 | 13.4 | 15.3 | 27.3 | 25.2 | 32.5 | 27.1 | 29.3 | 21.2 |
| Management, sales, and administration....... | 12.3 | 13.3 | 7.6 | 14.0 | 14.7 | 12.2 | 16.7 | 19.6 | S |
| Computer applications............................ | 9.8 | 10.6 | 6.2 | 3.7 | 4.5 | 1.7 | 5.2 | 6.8 | S |
| Professional services............................. | 4.9 | 4.0 | 9.0 | 11.2 | 7.9 | 19.3 | 20.4 | 14.0 | 38.2 |
| Other activities.... | 3.9 | 4.1 | 3.1 | 5.6 | 5.5 | 5.7 | 6.9 | 7.5 | S |
| Federal support: |  |  |  |  |  |  |  |  |  |
| Receiving support.................................. | 26.9 | 26.3 | 29.7 | 27.9 | 29.3 | 24.4 | 24.9 | 26.6 | 20.0 |
| Not receiving support.............................. | 73.1 | 73.7 | 70.3 | 72.1 | 70.7 | 75.6 | 75.1 | 73.4 | 80.0 |
| Relationship between degree and job: |  |  |  |  |  |  |  |  |  |
| Closely related.................................... | 64.6 | 64.6 | 64.3 | 73.8 | 73.2 | 75.4 | 71.0 | 69.1 | 76.3 |
| Somewhat related................................ | 27.8 | 27.6 | 28.7 | 20.4 | 21.6 | 17.4 | 21.0 | 22.2 | 17.7 |
| Not related......................................... | 7.6 | 7.8 | 7.0 | 5.8 | 5.2 | 7.2 | 8.0 | 8.7 | S |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding. 'Other' race included with 'white'.

KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 35. Employed doctoral scientists and engineers, by employment-related characteristics and sector of employment: 1997

| Page 1 of 2. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private forprofit | Selfemployed | Private not-for-profit | Federal government | State and local government | Other sector |
| Total. | 518,440 | 233,180 | 136,470 | 165,040 | 25,100 | 26,330 | 38,070 | 15,450 | 1,620 |
|  | [Percentage distribution] |  |  |  |  |  |  |  |  |
| Field of doctorate: |  |  |  |  |  |  |  |  |  |
| Sciences.............................................. | 82.9 | 88.4 | 97.3 | 70.2 | 91.6 | 90.7 | 83.8 | 92.0 | 87.1 |
| Computer and mathematical sciences...... | 6.3 | 8.0 | 5.3 | 5.9 | 2.1 | 3.6 | 4.0 | 0.9 | S |
| Computer and information sciences........ | 1.5 | 1.4 | 0.5 | 2.4 | 0.5 | 0.9 | 0.7 | 0.3 | S |
| Mathematical sciences......................... | 4.7 | 6.6 | 4.9 | 3.5 | 1.5 | 2.8 | 3.3 | 0.6 | S |
| Biological and agricultural sciences........... | 24.0 | 29.4 | 22.3 | 18.0 | 12.1 | 21.7 | 28.4 | 22.2 | 12.1 |
| Agriculturalfood sciences...................... | 3.0 | 3.2 | 1.8 | 3.1 | 2.7 | 1.4 | 4.0 | 1.5 | S |
| Biological sciences... | 20.2 | 25.5 | 20.1 | 14.3 | 9.1 | 19.5 | 21.9 | 18.1 | 9.8 |
| Environmental life sciences................... | 0.8 | 0.7 | 0.3 | 0.6 | 0.3 | 0.8 | 2.6 | 2.6 | S |
| Health sciences...................................... | 3.3 | 4.0 | 3.3 | 2.2 | 2.3 | 5.5 | 3.0 | 4.4 | S |
| Physical and related sciences................... | 20.3 | 15.8 | 19.4 | 28.5 | 11.8 | 13.5 | 26.8 | 11.8 | 6.9 |
| Chemistry, except biochemistry.............. | 10.5 | 6.7 | 11.2 | 18.3 | 6.6 | 6.2 | 7.7 | 3.9 | S |
| Earth/atmos/Ocean sciences.. | 2.9 | 3.1 | 2.3 | 2.1 | 2.0 | 2.1 | 6.3 | 4.6 | S |
| Physics and astronomy......................... | 6.9 | 6.1 | 5.8 | 8.1 | 3.2 | 5.2 | 12.8 | 3.2 | 4.7 |
| Social sciences.................................... | 13.7 | 19.5 | 14.8 | 5.1 | 9.8 | 15.9 | 12.8 | 17.1 | 63.0 |
| Economics........................................ | 3.9 | 4.9 | 0.9 | 2.0 | 1.7 | 3.8 | 5.9 | 3.5 | 56.2 |
| Political and related sciences................. | 3.1 | 4.6 | 3.6 | 0.9 | 2.3 | 3.0 | 2.7 | 4.8 | S |
| Sociology | 2.6 | 4.1 | 3.7 | 0.5 | 1.8 | 3.8 | 1.2 | 3.1 | S |
| Other social sciences. | 4.2 | 6.0 | 6.6 | 1.6 | 4.0 | 5.2 | 3.0 | 5.7 | 3.4 |
| Psychology............................................ | 15.3 | 11.7 | 32.2 | 10.5 | 53.5 | 30.5 | 8.8 | 35.7 | 3.2 |
| Engineering........................................... | 17.1 | 11.6 | 2.7 | 29.8 | 8.4 | 9.3 | 16.2 | 8.0 | 12.9 |
| Aerospace/aeronautical engineering....... | 0.7 | 0.5 | S | 1.1 | 0.5 | 0.6 | 1.2 | 0.1 | S |
| Chemical engineering............................ | 2.4 | 1.1 | 0.4 | 5.1 | 1.2 | 1.5 | 1.3 | 0.1 | S |
| Civillarchitectural engineering................. | 1.6 | 1.5 | 0.4 | 2.0 | 0.7 | 0.9 | 1.5 | 2.4 | S |
| Electrical/computer engineering............... | 4.6 | 3.0 | 0.5 | 8.6 | 2.0 | 2.2 | 3.3 | 1.1 | 4.2 |
| Materials/metallurgical engineering.......... | 1.6 | 0.7 | S | 3.4 | 1.1 | 0.7 | 2.1 | 0.3 | S |
| Mechanical engineering......................... | 2.1 | 1.4 | S | 4.0 | 1.1 | 1.1 | 1.7 | 0.1 | S |
| Other engineering................................. | 4.1 | 5.8 | 1.0 | 5.7 | 1.9 | 2.5 | 5.1 | 3.7 | 5.7 |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates................................ | 9.2 | 10.0 | 8.7 | 8.9 | 3.0 | 11.2 | 8.3 | 8.0 | 6.5 |
| 1993-94 graduates................................. | 8.0 | 8.8 | 9.2 | 7.7 | 4.5 | 9.1 | 6.3 | 6.6 | 9.8 |
| 1990-92 graduates................................ | 11.0 | 10.6 | 11.3 | 12.0 | 7.5 | 11.8 | 10.1 | 11.9 | 11.1 |
| 1985-89 graduates................................ | 15.9 | 15.5 | 17.4 | 16.2 | 13.8 | 16.5 | 15.8 | 21.0 | 15.8 |
| 1980-84 graduates................................ | 14.5 | 13.2 | 14.5 | 15.4 | 19.0 | 14.3 | 15.3 | 16.7 | 16.6 |
| 1970-79 graduates................................ | 27.7 | 26.3 | 30.6 | 27.7 | 32.0 | 27.8 | 31.3 | 28.8 | 28.4 |
| 1960-69 graduates................................ | 11.7 | 13.5 | 7.6 | 10.3 | 13.8 | 7.5 | 11.5 | 6.2 | 10.1 |
| Pre-1960 graduates............................... | 2.1 | 2.1 | 0.8 | 1.7 | 6.5 | 1.8 | 1.3 | 0.8 | S |

See explanatory information and SOURCE at end of table.

Table 35. Employed doctoral scientists and engineers, by employment-related characteristics and sector of employment: 1997

| Page 2 of 2 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private forprofit | Selfemployed | Private not-for-profit | Federal govemment | State and local govemment | Other sector |
| Primary work activity: |  |  |  |  |  |  |  |  |  |
| R\&D. | 40.7 | 39.2 | 2.7 | 47.2 | 15.8 | 37.9 | 59.6 | 25.3 | 40.5 |
| Applied research.... | 19.4 | 14.8 | 1.6 | 24.9 | 8.3 | 22.5 | 36.6 | 16.4 | 28.1 |
| Basic research..... | 13.4 | 23.1 | 0.8 | 2.5 | 2.0 | 10.5 | 18.5 | 5.3 | 3.9 |
| Development. | 5.6 | 1.0 | S | 14.1 | 3.7 | 3.3 | 2.8 | 1.6 | 5.3 |
| Design........................................... | 2.3 | 0.3 | S | 5.7 | 1.7 | 1.6 | 1.7 | 2.1 | 3.3 |
| Teaching................ | 21.8 | 43.9 | 63.5 | 0.5 | 1.4 | 1.4 | 0.5 | 1.3 | S |
| Management, sales, and administration... | 16.2 | 9.1 | 10.7 | 23.8 | 9.9 | 24.8 | 19.3 | 30.5 | 38.0 |
| Computer applications.......................... | 4.8 | 1.3 | 0.9 | 10.6 | 3.6 | 3.9 | 4.0 | 4.1 | S |
| Professional services................................. | 11.8 | 4.1 | 17.1 | 12.5 | 59.7 | 24.9 | 6.9 | 27.0 | 5.3 |
| Other activities..................................... | 4.8 | 2.4 | 5.0 | 5.3 | 9.6 | 7.1 | 9.7 | 11.7 | 14.7 |

NOTE: $\quad \begin{aligned} & \text { Numbers are rounded to nearest ten. } \\ & \quad \text { Details may not add to total because of rounding. }\end{aligned}$
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.
Table 36. Employed doctoral scientists and engineers, by employment-related characteristics and primary work activity: 1997 :


[^17]

[^18]$\mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).

NOTE: KEY: SOURCE:

| Page 1 of 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field of doctorate | Total | Broad occupation |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Computer and information scientists |  | Mathematical scientists |  | Life and related scientists |  | Physical and related scientists |  | $\begin{array}{c}\text { Social and related } \\ \text { scientists }\end{array}$ |  | Psychologists |  | Engineers |  | Non-S\&E Occupations |  |  |  |  |
|  |  | Total | Nonteacher | Postsec. teacher | $\begin{array}{c\|} \begin{array}{c} \text { Non- } \\ \text { teacher } \end{array} \\ \hline \end{array}$ | $\begin{aligned} & \text { Postsec, } \\ & \text { teacher } \end{aligned}$ | Nonteacher | Postsec. teacher | Non- | Postsec. teacher | $\begin{array}{\|c\|} \hline \text { Non- } \\ \text { teacher } \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Postsec } \\ \text { teacher } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Non- } \\ \text { teacher } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|l} \text { Postsec. } \\ \text { leacher } \end{array}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Non- } \\ \text { teacher } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \begin{array}{l} \text { Postsec. } \\ \text { teacher } \end{array} \\ \hline \end{array}$ | Total | $\begin{gathered} \text { Managers, } \\ \text { admin. } \end{gathered}$ | Health and related | Teacher, ex. S\&E postsec. | Other |
|  | $\int_{429,820}^{51840}$ | [Percentage distribution] |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total. |  | 100.0 | 4.0 | 1.0 | 1.1 | 2.6 | 12.7 | 6.1 | 9.3 | 4.7 | 2.4 | 5.9 | 8.7 | 3.0 | 10.2 | 3.3 | 25.0 | 13.7 | 2.8 | 4.0 | 4.5 |
| Sciences.... |  | 100.0 | 3.3 | 1.0 | 1.3 | 3.0 | 15.1 | 7.3 | 10.7 | 5.6 | 2.9 | 7.1 | 10.5 | 3.6 | 2.1 | 0.3 | 26.1 | 13.4 | 3.2 | 4.6 | 4.9 |
| Computer and |  |  |  |  |  |  | 0.4 | S | 08 | s | s | 0.3 | s | s | 26 | 0.7 | 17.5 | 10.3 | 0.2 | 2.1 | 5.0 |
| mathematical sciences.............. | 32,400 8,000 | 100.0 | 20.4 | 30.6 | 9.5 | 36.9 0.7 | 0.4 0.6 | $s$ | 0.8 5 | s | s | S | s | s | 3.1 | s | 15.8 | 10.2 | S | 3.3 | 2.3 |
| Mathematical sciences.......... | 24,400 | 100.0 | 11.2 | 4.1 | 12.6 | 48.8 | 0.4 | s | 1.0 | 0.2 | s | 0.3 | s | s | 2.4 | 0.8 | 18.1 | 10.4 | 0.2 | 1.7 | 5.9 |
| Biological and |  | 1000 | 12 | 0.1 | 0.8 | 0.3 | 44.1 | 23.0 | 1.4 | 2.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.8 | 0.1 | 26.0 | 12.1 | 6.5 | 2.9 | 4.5 |
| agnicutural sciences................ | 124,600 | 100.0 | 1.2 0.7 | - | 0.4 | S S | 49.0 | 19.3 | 2.6 | 1.5 | - | 0.4 | . | s | 1.1 | S | 24.7 | 14.0 | 1.5 | 2.0 | 7.2 |
| Biological sciences.................. | 104,630 | 100.0 | 1.1 | 0.1 | 0.8 | 0.3 | 43.6 | 23.8 | 1.1 | 2.0 | 0.1 | S | 0.1 | 0.1 | 0.6 | 0.1 | 26.3 | 11.7 | 7.6 | 3.1 | 4.0 |
| Environmental life sciences......... | 4,300 | 100.0 | 1.6 |  | 1.2 | s | 36.6 | 17.8 | 5.5 | 4.2 | 2.1 | s | s | s | 5.2 | s | 24.0 | 16.6 | S | 1.9 | 5.5 |
| Heath sciences.... | 17,180 | 100.0 | 1.0 | $s$ | 0.4 | s | 18.5 | 5.1 | 2.3 | s | 1.3 | s | 0.9 | 0.3 | 0.5 | $s$ | 69.1 | 17.1 | 17.5 | 31.9 | 2.7 |
| Physical and related sciences........ | 105,250 | 100.0 | 4.0 | 0.3 | 0.3 | 0.2 | 4.9 | 0.7 | 40.8 | 19.9 | 0.1 | 0.1 | s | 0.1 | 6.3 | 0.9 | 21.5 | 14.0 | 1.0 | 1.3 | 5.2 |
| Chemistry except biochemisty.... | 54,220 | 100.0 | 1.9 | 0.2 | 0.1 | s | 7.0 | 0.6 | 43.8 | 18.5 | s | S | s | 0.1 | 3.7 | 0.4 | 23.8 | 15.9 | 1.4 | 1.4 | 5.1 |
| Earth/atmos/ocean sciences........ | 15,110 | 100.0 | 2.2 | s | 0.4 | s | 3.6 | 0.9 | 44.8 | 26.6 | s | 0.6 | s | s | 3.0 | 0.8 | 16.9 | 11.3 | 0.4 | 1.2 | 4.0 |
| Physics and astronomy.......... | 35,920 | 100.0 | 7.9 | 0.6 | 0.6 | 0.7 | 2.1 | 0.6 | 34.7 | 19.3 | 0.2 | 0.1 | s | 0.1 | 11.6 | 1.7 | 19.9 | 12.3 | 0.7 | 1.0 | 5.8 |
| Social sciences.. | 71,070 | 100.0 | 1.4 | 0.4 | 1.1 | 0.6 | 0.3 | 0.6 | 0.6 | 0.6 | 16.3 | 42.2 | 0.8 | 0.4 | 0.3 | S | 34.4 | 17.1 | 1.0 | 9.4 | 6.9 |
| Economics... | 20,080 | 100.0 | 0.9 | 0.4 | 1.1 | s | s | 0.9 | 0.5 | s | 29.1 | 41.3 | s | $s$ | S | S | 25.3 | 16.5 | 0.6 | 5.2 | 2.9 |
| Political and related sciences...... | 15.820 | 100.0 | 1.0 | S | 0.4 | s | s | s | S | 0.7 | 8.4 | 53.7 | 0.3 | $s$ | 0.3 | S | 34.7 | 21.7 | 1.4 | 3.7 | 7.9 |
|  | 13,230 | 100.0 | 0.9 | - s | 1.0 | 0.4 | s | 0.9 | s | s | 14.4 | 50.2 | 1.3 | s | S | S | 30.0 | 15.1 | 0.6 | 7.6 | 6.7 |
| Other social sciences.......... | 21,940 | 100.0 | 2.4 | 0.8 | 1.6 | 1.9 | 0.9 | 0.7 | 1.2 | 1.2 | 11.3 | 29.9 | 1.5 | 0.9 | 0.5 | S | 45.2 | 15.6 | 1.4 | 18.4 | 9.9 |
| Psychology.... | 79,320 | 100.0 | 1.4 | 0.1 | 0.4 | s | 1.8 | 0.8 | s | 0.1 | 0.7 | 0.3 | 55.9 | 18.9 | 0.3 | s | 19.2 | 11.8 | 0.9 | 2.5 | 4.0 |

Table 37. Employed doctoral scientists and engineers, by field of doctorate and broad occupation: 1997


[^19]Table 38. Median annual salaries of doctoral scientists and enginéers, by field of doctorate, racelethnicity, and sex: 1997

| Field of doctorate | Total |  |  |  |  |  | Page 1 of 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | White |  |  | Black |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total.. | \$65,000 | \$70,000 | \$53,000 | \$65,500 | \$70,000 | \$53,000 | \$59,000 | \$62,000 | \$52,000 |
| Sciences.................................. | 62,000 | 66,000 | 52,000 | 63,500 | 67,500 | 52,500 | 57,000 | 60,000 | 52,000 |
| Computer and mathematical sciences.... | 65,000 | 67,000 | 56,000 | 67,000 | 68,000 | 56,000 | 63,000 | 69,000 | S |
| Computerfinformation sciences.... | 72,000 | 75,000 | 61,000 | 72,000 | 72,000 | . 58,000 | S | - S | S |
| Mathematical sciences. | 63,000 | 65,000 | 52,000 | 65,000 | 66,000 | 54,000 | 63,000 | 63,000 | S |
| Biological and agricultural sciences... | 60,000 | 63,000 | 50,000 | 60,800 | 65,000 | 50,000 | 54,000 | 57,000 | 48,000 |
| Agricultural/ food sciences.... | 60,000 | 62,000 | 50,000 | 60,000 | 62,000 | 50,000 | 44,000 | 44,000 | S |
| Biological sciences.... | 60,000 | 64,000 | 49,800 | 61,000 | 65,000 | 50,000 | 56,000 | 60,000 | 49,000 |
| Environmental life sciences... | 60,000 | 61,000 | 50,000 | 61,000 | 61,000 | 50,000 | S | S | S |
| Health sciences. | 60,000 | 71,000 | 55,000 | 60,000 | 71,500 | 54,000 | 58,000 | 60,000 | 57,000 |
| Physical and related sciences....... | 70,000 | 72,000 | 59,000 | 72,000 | 74,000 | 60,000 | 67,000 | 69,000 | S |
| Chemistry except biochemistry.... | 70,500 | 73,000 | 60,000 | 72,400 | 75,000 | 62,000 | 65,000 | 67,000 | S |
| Earth/atmos/ocean sciences. | 60,000 | 62,000 | 46,000 | 62,000 | 65,000 | 48,000 | S | S | S |
| Physics and astronomy.... | 73,000 | 75,000 | 60,000 | 75,000 | 75,000 | 58,000 | 76,000 | 76,000 | S |
| Social sciences.. | 58,000 | 60,100 | 51,300 | 59,400 | 62,000 | 52,000 | 55,000 | 56,500 | 53,000 |
| Economics. | 69,000 | 70,000 | 64,000 | 70,000 | 70,000 | 65,000 | 66,000 | 66,000 | S |
| Political and related sciences.. | 58,000 | 60,000 | 50,000 | 58,000 | 60,000 | 51,800 | 65,000 | 71,000 | 45,000 |
| Sociology................. | 53,300 | 55,000 | 50,000 | 55,000 | 57,000 | 50,000 | 50,000 | 46,000 | 56,000 |
| Other social sciences..... | 52,000 | 55,000 | 49,000 | 52,000 | 56,400 | 49,600 | 50,000 | 45,800 | 52,000 |
| Psychology | 60,000 | 64,000 | 52,000 | 60,000 | 65,000 | 53,000 | 55,000 | 57,000 | 52,000 |
| Engineering... | 75,000 | 76,000 | 63,000 | 78,000 | 80,000 | 62,000 | 68,600 | 68,600 | S |
| Aerospace/aeronautical engineering...... | 75,000 | 74,000 | S | 78,500 | 78,500 | S | S | S | S |
| Chemical engineering............. | 79,000 | 80,000 | 65,000 | 81,700 | 84,000 | 60,000 | S | S | S |
| Civilarchitectural engineering........... | 69,000 | 70,000 | 50,000 | 70,000 | 70,000 | 55,000 | 52,000 | 52,000 | S |
| Electrical/computer engineering........ | 80,000 | 80,000 | 68,000 | 82,500 | 84,000 | 61,200 | 72,000 | 73,500 | S |
| Materials/metallurgical engineering........ | 75,000 | 76,000 | 63,000 | 78,000 | 80,000 | 62,000 | S | S | S |
| Mechanical engineering...... | 73,000 | 74,000 | 56,000 | 75,000 | 75,000 | S | S | S | S |
| Other engineering.... | 75,000 | 75,000 | 64,100 | 76,000 | 79,000 | 65,000 | 64,000 | 64,000 | S |

[^20]Table 38. Median annual salaries of doctoral scientists and engineers; by field of doctorate, racelethnicity, and sex: 1997

| Field of doctorate |  |  |  |  |  |  | Page 2 of 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | \$65,000 | \$67,000 | \$51,000 | \$59,500 | \$65,000 | \$47,000 | \$56,000 | \$58,000 | \$50,000 |
| Sciences............................................. | 57,600 | 60,000 | 50,000 | 56,000 | 60,000 | 46,000 | 54,000 | 57,000 | 50,000 |
| Computer and mathematical sciences.... | 62,100 | 64,000 | 57,700 | 64,000 | 67,800 | S | S | S | S |
| Computer/information sciences........... | 72,000 | 75,000 | 65,000 | S | S | S | S | S | S |
| Mathematical sciences....................... | 55,000 | 55,000 | 51,000 | 54,000 | 55,000 | S | S | S | S |
| Biological and agricultural sciences........ | 47,000 | 51,000 | 38,600 | 54,000 | 58,000 | 44,000 | 60,000 | 60,000 | S |
| Agricultural/ food sciences.................. | 57.700 | 60,000 | 50,000 | 54,000 | 57,000 | S | S | S | S |
| Biological sciences............................ | 45,000 | 50,000 | 37,000 | 54,600 | 60,000 | 43,000 | 62,000 | S | S |
| Environmental life sciences................. | 55,000 | 55,000 | S | S | S | S | S | S | S |
| Health sciences. | 70,000 | 74,000 | 65,000 | 62,000 | S | 54,000 | S | S | S |
| Physical and related sciences............... | 65,000 | 65,000 | 57,000 | 60,000 | 68,000 | 43,500 | 78,000 | 80,000 | S |
| Chemistry except biochemistry............ | 65,000 | 65,000 | 57,000 | 60,000 | 70,000 | 41,000 | 75,000 | S | S |
| Earth/atmos/ocean sciences. | 50,000 | 50,000 | S | 51,000 | 51,000 | S | S | S | S |
| Physics and astronomy. | 66,000 | 66,000 | 63,000 | 68,700 | 70,200 | S | S | S | S |
| Social sciences.. | 54,000 | 55,000 | 48,000 | 54,000 | 56,000 | 44,000 | 48,000 | 49,000 | S |
| Economics. | 60,000 | 60,000 | 57,000 | 80,000 | 90,000 | S | S | S | S |
| Political and related sciences. | 60,000 | 65,000 | S | 52,000 | 52,000 | S | S | S | S |
| Sociology | 44,000 | 49,000 | 41,000 | 47,000 | S | S | S | S | S |
| Other social sciences.... | 50,000 | 51,000 | 43,500 | 50,000 | 56,000 | 39,000 | 48,000 | 48,000 | S |
| Psychology....................................... | 50,000 | 50,000 | 50,000 | 50,000 | 64,000 | 47,000 | 52,000 | S | S |
| Engineering.......................................... | 72,000 | 72,000 | 63,000 | 70,000 | 70,000 | S | S | S | S |
| Aerospace/aeronautical engineering....... | 67,000 | 67,000 | S | S | S | S | S | S | S |
| Chemical engineering......................... | 74,000 | 74,000 | S | S | S | S | S | S | S |
| Civil/architectural engineering............... | 68,000 | 70,000 | S | S | S | S | S | S | S |
| Electrical/computer engineering............. | 75,000 | 76,000 | 70,000 | 70,000 | 70,000 | S | S | S | S |
| Materials/metallurgical engineering........ | 70,000 | 70,000 | 69,000 | S | S | S | S | S | S |
| Mechanical engineering....................... | 70,000 | 70,000 | S | S | S | S | S | S | S |
| Other engineering............................... | 70,000 | 70,000 | 56,000 | 68,000 | 70,000 | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Page 1 of 2


See explanatory information and SOURCE at end of table.

| Occupation |  |  |  | Page 2 of 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | \$65,000 | \$67,000 | \$51,000 | \$59,500 | \$65,000 | \$47,000 | \$56,000 | \$58,000 | \$50,000 |
| Scientists.. | 57,000 | 60,000 | 50,000 | 55,000 | 59,000 | 45,000 | 51,100 | 52,000 | 50,000 |
| Computer and mathematical scientists.... | 65,000 | 65,000 | 60,000 | 64,000 | 66,000 | S | S | S | S |
| Computer/information scientists.. | 72,500 | 75,000 | 70,000 | 78,200 | 80,000 | S | S | S | S |
| Mathematical scientists............................................ | 65,000 | 65,000 | 65,000 | S | S | S | S | S | S |
| Postsecondary teachers, computer and mathematical sciences. | 49,400 | 50,000 | 45,000 | 50,000 | 55,000 | S | S | S | S |
| Life and related scientists.. | 45,000 | 50,000 | 37,000 | 50,000 | 56,000 | 42,000 | 54,000 | S | S |
| Agricultural scientists.. | 58,500 | 58,500 | S | S | S | S | S | S | S |
| Biological scientists. | 38,000 | 40,000 | 35,000 | 51,000 | 59,000 | 35,000 | S | S | S |
| Forestry and conservation scientists. | S | S | S | S | S | S | S | S | S |
| Postsecondary teachers, life and related sciences. | 57,600 | 60,000 | 50,000 | 48,500 | 52,000 | S | S | S | S |
| Physical and related scientists. | 60,000 | 60,000 | 60,000 | 60,000 | 60,000 | 41,000 | S | S | S |
| Chemists, except biochemistry...................................... | 65,000 | 65,000 | 62,000 | 60,000 | 60,000 | S | S | S | S |
| Earth scientists.. | 54,100 | 58,000 | S | 75,000 | S | S | S | S | S |
| Physics and astronomers. | 63,000 | 62,000 | 67,000 | 60,000 | S | S | S | S | S |
| Other physical scientists............................................... | S | S | S | S | S | S | S | S | S |
| Postsecondary teachers, physical and related sciences .... | 51,000 | 52,000 | 44,300 | 51,000 | 54,000 | S | S | S | S |
| Social scientists. | 52,000 | 54,000 | 48,000 | 55,000 | 56,000 | 45,000 | 48,000 | S | S |
| Economists. | 61,000 | 55,000 | S | S | - S | S | S | S | S |
| Political scientists. | S | S | S | S | S | S | S | S | S |
| Sociologists and anthropologists. | S | S | S | S | S | S | S | S | S |
| S\&T historians and other social scientists. | S | S | S | S | S | S | S | S | S |
| Postsecondary teachers, social and related sciences ........ | 50,000 | 51,000 | 42,600 | 50,000 | 52,000 | 44,000 | 48,000 | S | S |
| Psychologists. | 47,600 | 44,000 | 50,000 | 48,000 | 52,000 | 46,000 | 52,000 | S | S |
| Psychologists. | 50,000 | 45,000 | 50,000 | 50,000 | 58,000 | 48,000 | 50,000 | S | S |
| Postsecondary teachers, psychology | 43,800 | S | S | 44,000 | 47,300 | 41,500 | S | S | S |
| Engineers. | 70,000 | 70,000 | 65,000 | 68,000 | 69,000 | S | S | S | S |
| Aerospace/aeronautical engineers. | 75,000 | 75,000 | S | S | S | S | S | S | S |
| Chemical engineers. | 70,400 | 70,000 | S | S | S | S | S | S |  |
| Civil and architectural engineers. | 60,000 | 61,000 | S | S |  | S | S | S | S |
| Electric and related engineers.. | 75,000 | 75,000 | 68,000 | 80,000 | 80,000 | S | S | S | S |
| Industrial engineers... | 69,000 | 68,000 | S | S | S | S | S | S | S |
| Mechanical engineers. | 70,000 | 70,000 | S | S | S | S | S | S | S |
| Other engineers. | 70,000 | 70,000 | 60,000 | 70,000 | 71,000 | S | S | S | S |
| Postsecondary teachers, engineering............................... | 66,500 | 66,500 | S | 60,000 | 60,000 | S | S | S | S |
| Non-S\&E occupations. | 78,000 | 82,000 | 55,000 | 75,000 | 80,000 | 53,000 | 60,000 | 60,000 | S |
| Managers, administrators, etc......................................... | 95,000 | 96,000 | 72,000 | 80,000 | 84,000 | 66,000 | 72,300 | 72,000 | S |
| Health and related occupations....................................... | 50,000 | 56,000 | 38,000 | 75,000 | S | S | S | S | S |
| Teachers, except S\&E postsecondary teachers................. | 55,000 | 60,000 | 43,500 | 44,000 | S | 41,700 | S | S | S |
| Social services and related occupations........................... | S | S | S | S | S | . S | S | S | S |
| Technologists, etc. | 76,000 | 76,000 | S | S | S | S | S | S | S |
| Sales and marketing occupations................................... | 66,000 | 70,000 | S | S | S | S | S | S | S |
| Other non-S\&E occupations.......................................... | 75,000 | 78,000 | S | S | S | S | S | S | S |

[^21]Table 40. Median annual salaries of doctoral scientists and engineers, by field of doctorate and sector of employment: 1997

| Field of doctorate | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Selfemployed | Private not for-profit | Federal govemment | State and local govemment | Other sector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$55,000 | \$48,000 | \$80,000 | \$75,000 | \$65,000 | \$71,000 | \$54,000 | \$90,000 |
| Sciences... | 62,000 | 54,000 | 48,000 | 80,000 | 75,000 | 63,000 | 70,000 | 54,000 | 100,000 |
| Computer and mathematical sciences... | 65,000 | 57,000 | 48,000 | 82,500 | 39,000 | 83,000 | 75,000 | S | S |
| Computerfinformation sciences.... | 72,000 | 57,000 | S | 85,000 | S | 86,600 | 70,000 | S | S |
| Mathematical sciences....................... | 63,000 | 57,000 | 47,400 | 82,000 | 75,000 | 80,000 | 75,000 | S | S |
| Biological and agricultural sciences....... | 60,000 | 53,500 | 42,000 | 76,000 | 60,000 | 62,000 | 65,200 | 50,000 | S |
| Agricultural food sciences.... | 60,000 | 56,000 | S | 69,000 | 60,000 | 69,000 | 63,000 | 40,000 | S |
| Biological sciences.... | 60,000 | 53,000 | 42,000 | 79,000 | 70,000 | 62,000 | 66,000 | 53,000 | S |
| Environmental life sciences... | 60,000 | 56,000 | S | 80,000 | S | 60,000 | 68,000 | 45,000 | S |
| Health sciences......... | 60,000 | 55,000 | 49,000 | 85,000 | 80,000 | 66,000 | 65,000 | 55,000 | S |
| Physical and related sciences... | 70,000 | 54,300 | .. 43,100 | 79,000 | 80,000 | 71,500 | 75,300 | 50,900 | S |
| Chemistry except biochemistry... | 70,500 | 51,000 | 43,500 | 79,000 | 70,000 | 70,000 | 71,100 | 50,000 | S |
| Earth/atmos/ocean sciences... | 60,000 | 51,000 | 40,000 | 72,000 | 96,000 | 60,000 | 75,800 | 47,500 | S |
| Physics and astronomy...... | 73,000 | 61,600 | 43,100 | 80,000 | 82,000 | 77,500 | 78,000 | 80,000 | S |
| Social sciences.. | 58,000 | 54,000 | 48,000 | 89,900 | 52,000 | 68,000 | 72,600 | 54,500 | 100,000 |
| Economics..... | 69,000 | 62,000 | S | 100,000 | 50,000 | 74,000 | 80,000 | 64,000 | 100,000 |
| Political and related sciences. | 58,000 | 53,000 | 52,000 | 96,000 | 100,000 | 64,000 | 85,000 | 65,000 | S |
| Sociology.............. | 53,300 | 51,000 | 50,000 | 65,300 | 40,000 | 70,000 | 75,000 | 44,500 | S |
| Other social sciences... | 52,000 | 50,000 | 46,000 | 74,000 | 60,000 | 61,000 | 61,000 | 51,500 | S |
| Psychology........ | 60,000 | 52,000 | 55,000 | 76,000 | 75,000 | 55,000 | 65,000 | 54,000 | S |
| Engineering.................................... | 75,000 | 68,000 | 42,000 | 80,000 | 80,000 | 80,500 | 78,000 | 53,800 | 80,000 |
| Aerospace/aeronautical engineering.... | 75,000 | 70,000 | S | 79,000 | S | S | 75,000 | S | S |
| Chemical engineering............................ | 79,000 | 65,000 | S | 80,000 | S | 85,000 | 78,000 | S | S |
| Civilarchitectural engineering.......... | 69,000 | 63,000 | S | 80,000 | S | 55,000 | 86,000 | 49,000 | S |
| Electricalcomputer engineering........... | 80,000 | 70,000 | S | 83,000 | 100,000 | 88,000 | 78,000 | S | S |
| Materials/metallurgical engineering...... | 75,000 | 65,000 | S | 78,000 | S | S | 75,000 | S | S |
| Mechanical engineering...................... | 73,000 | 65,000 | S | 75,000 | S | 90,000 | 76,000 | S | S |
| Other engineering... | 75,000 | 68,000 | S | 80,000 | 60,000 | 84,000 | 78,500 | 58,000 | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 41. Median annual salaries of doctoral scientists and engineers; by occupation, and sector of employment: 1997

| Occupation | Total | Universities and 4-year colleges | Other educational institutions | Private-for- profit profit | Selfemployed | Private not-forprofit | Federal government | State and local government | Other sector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$55,000 | \$48,000 | \$80,000 | \$75,000 | \$65,000 | \$71,000 | \$54,000 | \$90,000 |
| Scientists. | 60,000 | 52,000 | 48,000 | 75,000 | 75,000 | 60,000 | 68,400 | $51,000$ | 80,000 |
| Computer and mathematical scientists..... | 66,000 | 56,000 | 48,000 | 78,000 | 50,000 | 74,200 | 69,500 | 45,000 | S |
| Computerlinformation scientists.. | 75,000 | 60,000 | S | 77,500 | 50,000 | 71,000 | 70,000 | 50,000 | S |
| Mathematical scientists... | 71,000 | 58,500 | S | 80,000 | S | 80,000 | 69,000 | S | S |
| Postsecondary teachers, computer and mathematical sciences. | 55,000 | 55,000 | 47,400 | S | S | S | S | S | S |
| Life and related scientists... | 57,000 | 52,000 | 45,000 | 72,000 | 50,000 | 60,000 | 63,000 | 46,000 | S |
| Agricultural scientists.. | 60,500 | 54,000 | S | 67,000 | 42,000 | 68,000 | 63,000 | 39,000 | S |
| Biological scientists. | 56,000 | 40,000 | S | 73,000 | 50,000 | 60,000 | 62,200 | 50,000 | S |
| Forestry and conservation scientists.. | 59,000 | 61,000 | S | 55,000 | S | S | 64,000 | S | S |
| Postsecondary teachers, life and related sciences. | 56,000 | 58,000 | 45,000 | S | S | S | S | S | S |
| Physical and related scientists... | 65,000 | 52,300 | 45,000 | 75,000 | 95,000 | 72,000 | 75,000 | 50,000 | S |
| Chemists, except biochemistry. | 71,000 | 38,400 | S | 75,000 | 80,000 | 71,100 | 70,000 | 46,100 | S |
| Earth scientists.. | 68,000 | 49,000 | S | 71,000 | S | 67,000 | 75,000 | 48,000 | S |
| Physics and astronomers.. | 74,000 | 50,000 | S | 81,000 | S | 75,000 | 75,000 | 80,000 | S |
| Other physical scientists.. | 75,000 | S | S | 77,000 | S | S | 72,600 | S | S |
| Postsecondary teachers, physical and related sciences ... | 53,600 | 54,200 | 43,500 | S | S | S | S | S | S |
| Social scientists. | 55,000 | 52,000 | 45,000 | 85,000 | 50,000 | 61,000 | 71,000 | 49,000 | 100,000 |
| Economists. | 75,000 | 55,000 | S | 95,000 | 50,000 | 58,000 | 73,000 | 65,000 | 100,000 |
| Political scientists. | 75,000 | 41,500 | S | S | S | 60,000 | 85,000 | S | S |
| Sociologists and anthropologists.. | 52,100 | 52,000 | S | 60,000 | S | 70,000 | 56,000 | 37,000 | S |
| S\&T historians and other social scientists. | 54,000 | 52,400 | S | 69,000 | S | 61,000 | 59,900 | 50,000 | S |
| Postsecondary teachers, social and related sciences | 52,000 | 52,000 | 45,000 | S | S | S | S | S | S |
| Psychologists... | 56,000 | 50,000 | 52,000 | 70,000 | 75,000 | 52,000 | 61,900 | 54,000 | S |
| Psychologists... | 60,000 | 48,000 | 54,500 | 70,000 | 75,000 | 52,000 | 61,900 | 54,000 | S |
| Postsecondary teachers, psychology. | 50,000 | 50,300 | 45,000 | S | S | S | S | S | S |
| Engineers. | 72,600 | 65,400 | S | 75,700 | 120,000 | 80,000 | 72,600 | 52,000 | S |
| Aerospace/aeronautical engineers. | 79,500 | 100,000 | S | 80,000 | S | 73,000 | 78,000 | S | S |
| Chemical engineers.. | 74,500 | 52,000 | S | 75,000 | S | S | 69,500 | S | S |
| Civil and architectural engineers. | 68,000 | 65,000 | S | 70,000 | S | S | 80,000 | 48,000 | S |
| Electric and related engineers.. | 80,000 | 75,000 | S | 80,000 | 175,000 | 88,000 | 72,600 | S | S |
| Industrial engineers.... | 72,000 | S | S | 72,000 | S | S | S | S | S |
| Mechanical engineers. | 74,000 | 68,000 | S | 75,000 | S | S | 70,200 | S | S |
| Other engineers.. | 74,500 | 60,000 | S | 75,100 | 120,000 | 88,400 | 75,000 | 53,800 | S |
| Postsecondary teachers, engineeining | 65,000 | 65,000 | S | S | S | S | S | S | S |
| Non-S\&E occupations. | 78,000 | 66,000 | 48,000 | 95,400 | 60,000 | 70,000 | 88,000 | 59,800 | 100,000 |
| Managers, administrators, etc. | 91,600 | 85,000 | 70,000 | 100,000 | 97,600 | 80,000 | 93,000 | 61,000 | 100,000 |
| Health and related occupations. | 75,000 | 62,500 | S | 100,000 | 110,000 | 72,000 | 65,000 | 59,000 | S |
| Teachers, except S\&E postsecondary teachers.. | 52,000 | 54,000 | 40,000 | 65,000 | S | S | S | S | S |
| Social services and related occupations... | 41,000 | 42,000 | 46,000 | S | S | 35,000 | S | 5 | S |
| Technologists, etc. | 60,000 | 38,000 | S | 65,000 | S | S | 60,000 | S | s |
| Sales and marketing occupations. | 74,900 | S | S | 75,000 | 65,000 | S | S | S | S |
| Other non-S\&E occupations..... | 52,000 | 45,000 | S | 62,000 | 30,000 | 55,000 | 70,000 | 51,000 | S |

[^22]Table 42. Median annual salaries of doctoral scientists and engineers, by field of doctorate and primary work
activity: 1997

| Field of doctorate | Total | R\&D | Teaching | Management, sales, and administration | Computer applications | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$68,000 | \$52,000 | \$82,000 | \$70,000 | \$65,000 |
| Sciences........................................... | 62,000 | 65,000 | 50,000 | 80,000 | 69,000 | 65,000 |
| Computer and mathematical sciences...... | 65,000 | 75,000 | 52,000 | 93,000 | 74,300 | 70,000 |
| Computer/information sciences... | 72,000 | 75,000 | 53,000 | 90,000 | 78,000 | S |
| Mathematical sciences...................... | 63,000 | 75,000 | 50,300 | 93,100 | 67,000 | 69,200 |
| Biological and agricultural sciences......... | 60,000 | 59,000 | 50,000 | 78,000 | 59,500 | 67,000 |
| Agricultural/ food sciences..................... | 60,000 | 60,000 | 52,000 | 72,000 | 60,000 | 60,000 |
| Biological sciences...................... | 60,000 | 58,300 | 50,000 | 80,000 | 60,000 | 70,000 |
| Environmental life sciences................. | 60,000 | 60,000 | 54,000 | 85,000 | S | 52,000 |
| Health sciences... | 60,000 | 66,000 | 50,000 | 75,000 | S | 65,000 |
| Physical and related sciences............. | 70,000 | 71,000 | 51,000 | 86,000 | 70,000 | 75,000 |
| Chemistry except biochemistry...... | 70,500 | 72,000 | 49,400 | 85,000 | 68,000 | 75,000 |
| Eath/atmos/ocean sciences................. | 60,000 | 65,000 | 50,000 | 84,000 | 58,000 | 65,000 |
| Physics and astronomy...................... | 73,000 | 73,000 | 55,000 | 90,700 | 70,000 | 88,000 |
| Social sciences................... | 58,000 | 63,100 | 50,000 | 73,000 | 60,000 | 67,000 |
| Economics.................................. | 69,000 | 71,400 | 60,000 | 94,000 | 60,000 | 78,000 |
| Political and related sciences......... | 58,000 | 55,000 | 49,000 | 80,000 | 91,000 | 78,400 |
| Sociology........ | 53,300 | 58,000 | 47,000 | 70,000 | 54,000 | 56,500 |
| Other social sciences .......................... | 52,000 | 57,000 | 48,000 | 60,000 | 52,000 | 55,000 |
| Psychology..................................... | 60,000 | 63,000 | 50,000 | 68,500 | 70,900 | 60,000 |
| Engineering........................................ | 75,000 | 75,000 | 63,000 | 95,500 | 75,000 | 79,000 |
| Aerospace/aeronautical engineering....... | 75,000 | 69,000 | 72,300 | 96,000 | 78,000 | 79,000 |
| Chemical engineering............................ | 79,000 | 75,000 | 60,000 | 100,000 | 75,000 | 85,000 |
| Civilarchitectural engineering................ | 69,000 | 69,000 | 60,000 | 90,000 | 68,000 | 60,000 |
| Electricalicomputer engineering.............. | 80,000 | 78,000 | 68,000 | 100,000 | 77,500 | 79,000 |
| Materials/metallurgical engineering......... | 75,000 | 70,000 | 64,000 | 90,000 | 80,000 | 82,000 |
| Mechanical engineering....................... | 73,000 | 72,800 | 60,000 | 99,000 | 69,500 | 75,000 |
| Other engineering.............................. | 75,000 | 75,000 | 62,000 | 86,000 | 75,000 | 85,000 |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Occupation | Total | R\&D | Teaching | Management, sales, and administration | Computer applications | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$68,000 | \$52,000 | \$82,000 | \$70,000 | \$65,000 |
| Scientists.. | 60,000 | 64,000 | 50,000 | 70,000 | 70,000 | 62,000 |
| Computer and mathematical scientists..... | 66,000 | 72,000 | 53,000 | 80,000 | 72,000 | 72,000 |
| Computerfinformation scientists......... | 75,000 | 80,000 | S | 85,000 | 72,000 | 77,500 |
| Mathematical scientists........... | 71,000 | 72,000 | S | 63,000 | 62,000 | 72,000 |
| Postsecondary teachers, computer and mathematical sciences. | 55,000 | 65,000 | 52,800 | 70,000 | 45,000 | 65,000 |
| Life and related scientists.... | 57,000 | 58,000 | 50,000 | 70,000 | 55,000 | 63,400 |
| Agricultural scientists....... | 60,500 | 60,000 | S | 65,000 | S | 60,000 |
| Biological scientists......................... | 56,000 | 53,400 | S | 72,000 | 53,000 | 67,000 |
| Forestry and conservation scientists.. | 59,000 | 58,000 | S | S | S | S |
| Postsecondary teachers, life and related sciences. | 56,000 | 65,000 | 50,000 | 57,000 | S | 67,000 |
| Physical and related scientists... | 65,000 | 70,000 | 50,000 | 75,000 | 68,000 | 72,000 |
| Chemists, except biochemistry. | 71,000 | 70,000 | S | 75,000 | 63,400 | 77,500 |
| Earth scientists.................. | 68,000 | 67,000 | S | 69,600 | 68,000 | 70,000 |
| Physics and astronomers... | 74,000 | 72,000 | S | 80,000 | 75,000 | 83,000 |
| Other physical scientists... | 75,000 | 77,800 | S | S | S | 73,000 |
| Postsecondary teachers, physical and related sciences | 53,600 | 66,000 | 50,000 | 70,000 | S | 62,000 |
| Social scientists. | 55,000 | 60,600 | 50,000 | 67,000 | 54,000 | 71,000 |
| Economists.. | 75,000 | 77,000 | S | 74,000 | 72,000 | 80,000 |
| Political scientists... | 75,000 | 44,000 | S | S | S | S |
| Sociologists and anthropologists... | 52,100 | 55,000 | S | 52,000 | S | 65,800 |
| S\&T historians and other social scientists. | 54,000 | 54,800 | S | S | S | S |
| Postsecondary teachers, social and related sciences | 52,000 | 57,000 | 50,000 | 68,000 | S | 56,500 |
| Psychologists... | 56,000 | 58,500 | 48,200 | 56,000 | S | 60,000 |
| Psychologists. | 60,000 | 55,000 | 60,000 | 55,000 | S | 60,000 |
| Postsecondary teachers, psychology... | 50,000 | 66,000 | 48,000 | 71,500 | S | 48,000 |
| Engineers.. | 72,600 | 75,000 | 63,000 | 85,000 |  |  |
| Aerospace/aeronautical engineers... | 79,500 | 76,500 | S | 100,800 | 88,000 | 72,00 |
| Chemical engineers.. | 74,500 | 72,000 | S | 85,500 | 75,000 | 80,000 |
| Civil and architectural engineers.. | 68,000 | 65,000 | S | 89,400 | 63,000 | 70,000 |
| Electric and related engineers... | 80,000 | 79,000 | S | 85,000 | 75,000 | 82,000 |
| Industrial engineers... | 72,000 | 75,000 | S | 72,000 | S | 82,00 |
| Mechanical engineers.. | 74,000 | 72,700 | S | 79,000 | 66,000 | 85,000 |
| Other engineers... | 74,500 | 73,000 | S | 85,000 | 71,000 | 70,000 |
| Postsecondary teachers, engineering. | 65,000 | 70,000 | 63,000 | 78,200 | S | 57,500 |
| Non-S\&E occupations.. | 78,000 | 85,000 | 51,000 | 88,000 | 67,000 | 70,000 |
| Managers, administrators, etc. | 91,600 | 100,000 | 72,000 | 91,000 | 80,000 | 85,000 |
| Health and related occupations... | 75,000 | 75,000 | 65,000 | 60,000 | S | 75,000 |
| Teachers, except S\&E postsecondary teachers.. | 52,000 | 63,000 | 50,000 | 55,000 | S | 60,000 |
| Social services and related occupations... | 41,000 | 53,000 | 35,000 | 40,000 | S | 42,000 |
| Technologists, etc.. | 60,000 | 65,000 | S | 56,000 | 60,000 | 60,000 |
| Sales and marketing occupations.... | 74,900 | 65,000 | S | 75,000 | S | 75,000 |
| Other non-S\&E occupations........ | 52,000 | 56,000 | S | 42,000 | 45,000 | 56,400 |

[^23]| Sectorfifild of doctorate | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| All sectors: |  |  |  |
| Total. | \$65,000 | \$70,000 | \$53,000 |
| Sciences.......................................................... | 62,000 | 66,000 | 52,000 |
| Computer and information sciences........................... | 72,000 | 75,000 | 61,000 |
| Mathematical sciences................. | 63,000 | 65,000 | 52,000 |
| Biological and agricultural sciences............................ | 60,000 | 63,000 | 50,000 |
| Health sciences. | 60,000 | 71,000 | 55,000 |
| Physical and related sciences........................................ | 70,000 | 72,000 | 59,000 |
| Social and related sciences...................................... | 58,000 | 60,100 | 51,300 |
| Psychology..................................................... | 60,000 | 64,000 | 52,000 |
| Engineering........................................................ | 75,000 | 76,000 | 63,000 |
| Universities and 4-year colleges: |  |  |  |
| Total.................................................................. | 55,000 | 60,000 | 46,100 |
| Sciences. | 54,000 | 57,000 | 46,000 |
| Computer and information sciences................ | 57,000 | 57,000 | 54,000 |
| Mathematical sciences. | 57,000 | 59,000 | 44,000 |
| Biological and agricultural sciences... | 53,500 | 57,000 | 43,000 |
| Health sciences... | 55,000 | 62,000 | 52,000 |
| Physical and related sciences........ | 54,300 | 57,600 | 42,000 |
| Social and related sciences.................................. | 54,000 | 56,200 | 47,200 |
| Psychology................... | 52,000 | 57,000 | 47,000 |
| Engineering....................................................... | 68,000 | 69,100 | 55,000 |
| Other educational institutions: |  |  |  |
| Total........................................................................ | 48,000 | 48,600 | 46,000 |
| Sciences... | 48,000 | 49,000 | 46,000 |
| Computer and information sciences........................... | S | S | S |
| Mathematical sciences.. | 47,400 | 48,000 | S |
| Biological and agricultural sciences... | 42,000 | 46,000 | 39,700 |
| Health sciences....................................................... | 49,000 | S | 48,000 |
| Physical and related sciences.................. | 43,100 | 45,000 | 37,900 |
| Social and related sciences................................... | 48,000 | 46,000 | 50,000 |
| Psychology................................................... | 55,000 | 57,000 | 52,000 |
| Engineering........................................................ | 42,000 | 43,000 | S |
| Private-for-profit: |  |  |  |
| Total................................................................. | 80,000 | 80,000 | 70,000 |
| Sciences.. | 80,000 | 80,000 | 70,000 |
| Computer and information sciences.......................... | 85,000 | 85,000 | 75,000 |
| Mathematical sciences:............................................. | 82,000 | 82,000 | 80,000 |
| Biological and agricultural sciences...................... | 76,000 | 79,000 | 70,000 |
| Heath sciences................................................. | 85,000 | 90,000 | 72,000 |
| Physical and related sciences............................ | 79,000 | 80,000 | 70,800 |
| Social and related sciences.................................... | 89,900 | 95,000 | 68,000 |
| Psychology........................................................... | 76,000 | 84,000 | 65,000 |
| Engineering........................................................ | 80,000 | 80,000 | 70,000 |
| Self-employed: |  |  |  |
| Total.................................................................... | 75,000 | 80,000 | 65,000 |
| Sciences........................................................ | 75,000 | 80,000 | 67,000 |
| Computer and information sciences........................ | S | S | S |
| Mathematical sciences......................................... | 75,000 | 39,000 | S |
| Biological and agricultural sciences.......................... | 60,000 | 60,000 | 60,000 |
| Health sciences... | 80,000 | 80,000 | S |
| Physical and related sciences.............. | 80,000 | 80,000 | S |
| Social and related sciences.................................. | 52,000 | 60,000 | 50,000 |
| Psychology............................................................... | 75,000 | 85,000 | 68,000 |
| Engineering......................................................... | 80,000 | 80,000 | S |

See explanatory information and SOURCE at end of table.

Table 44. Median annual salaries of doctoral scientists and engineers, by sector of employment, broad field of doctorate, and sex: 1997

| Sector/field of doctorate |  | Page 2 of 2 |  |
| :---: | :---: | :---: | :---: |
|  | Total | Male | Female |
| Private not-for-profit: |  |  |  |
| Total.. | \$65,000 | \$70,000 | \$53,000 |
| Sciences...... | 63,000 | 68,000 | 53,000 |
| Computer and information sciences... | 86,600 | S | S |
| Mathematical sciences.................................... | 80,000 | 84,000 | S |
| Biological and agricultural sciences..................... | 62,000 | 67,500 | 47,000 |
| Health sciences.... | 66,000 | 70,000 | 63,000 |
| Physical and related sciences.................................... | 71,500 | 73,000 | 62,000 |
| Social and related sciences................................ | 68,000 | 66,100 | 70,000 |
| Psychology................................ | 55,000 | 62,000 | 50,000 |
| Engineering.......................................................... | 80,500 | 81,000 | S |
| Federal government: |  |  |  |
| Total... | 71,000 | 72,600 | 64,000 |
| Sciences.... | 70,000 | 71,100 | 64,000 |
| Computer and information sciences......... | 70,000 | 83,000 | S |
| Mathematical sciences.. | 75,000 | 75,000 | S |
| Biological and agricultural sciences......... | 65,200 | 68,000 | 60,000 |
| Health sciences..................... | 65,000 | 70,000 | 60,000 |
| Physical and related sciences................................ | 75,300 | 77,000 | 69,000 |
| Social and related sciences................................... | 72,600 | 72,600 | 71,000 |
| Psychology.................................................................. | 65,000 | 65,000 | 64,100 |
| Engineering.......................................................... | 78,000 | 80,000 | 63,000 |
| State and local government: |  |  |  |
| Total.................................................................. | 54,000 | 54,000 | 52,400 |
| Sciences...................................................... | 54,000 | 54,500 | 52,000 |
| Computer and information sciences............... | S | S | S |
| Mathematical sciences............................................... | S | S | S |
| Biological and agricultural sciences................. | 50,000 | 51,300 | 45,000 |
| Health sciences... | 55,000 | 59,100 | 55,000 |
| Physical and related sciences.................................. | 50,900 | 50,900 | S |
| Social and related sciences................................... | 54,500 | 54,500 | 55,000 |
| Psychology....................................................... | 54,000 | 55,000 | 53,000 |
| Engineering........................................................ | 53,800 | 53,000 | S |
| Other sector: |  |  |  |
| Total................................................................. | 90,000 | 90,000 | 95,000 |
| Sciences.......................................................... | 100,000 | 100,000 | 95,000 |
| Computer and information sciences....................... | S | S | S |
| Mathematical sciences..................................... | S | S | S |
| Biological and agricultural sciences......................... | S | S | S |
| Health sciences.... | S | S | S |
| Physical and related sciences................. | S | S | S |
| Social and related sciences.. | 100,000 | 100,000 | 100,000 |
| Psychology.................................................... | S | S | S |
| Engineering......................................................... | 80,000 | 80,000 | S |

NOTE: Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 45. Median annual salaries of doctoral scientists and engineers, by sector of employment, broad occupation, and sex: 1997

Page 1 of 2

| Sector/occupation | Total | Male | Female |
| :---: | :---: | :---: | :---: |
| All Sectors: |  |  |  |
| Total.. | \$65,000 | \$70,000 | \$53,000 |
| Scientists........................................................... | 60,000 | 63,000 | 50,000 |
| Computer and information scientists................................. | 72,000 | 72,000 | 65,000 |
| Mathematical scientists................................................ | 59,000 | 60,000 | 50,000 |
| Life and related scientists......................................... | 57,000 | 60,000 | 47,500 |
| Physical and related scientists.... | 65,000 | 67,100 | 55,000 |
| Social and related scientists......................................... | 55,000 | 56,000 | 50,000 |
| Psychologists... | 56,000 | 61,000 | 50,000 |
| Engineers.. | 72,600 | 73,400 | 63,000 |
| Non-S\&E occupations................................................ | 78,000 | 85,000 | 58,900 |
| University and 4-year colleges: |  |  |  |
| Total... | 55,000 | 60,000 | 46,100 |
| Scientists. | 52,000 | 55,000 | 44,000 |
| Computer and information scientists................................ | 60,000 | 60,000 | 50,000 |
| Mathematical scientists.............. | 53,900 | 55,000 | 43,000 |
| Life and related scientists.. | 52,000 | 56,000 | 42,000 |
| Physical and related scientists. | 52,300 | 54,300 | 42,000 |
| Social and related scientists....................................... | 52,000 | 54,500 | 46,000 |
| Psychologists................................................. | 50,000 | 54,500 | 44,500 |
| Engineers............................................... | 65,400 | 67,400 | 55,000 |
| Non-S\&E occupations............................................... | 66,000 | 75,000 | 52,000 |
| Other educational institutions: |  |  |  |
| Total.............................................................................. | 48,000 | 48,600 | 46,000 |
| Scientists.. | 48,000 | 48,600 | 45,000 |
| Computer and information scientists............................... | S | S | S |
| Mathematical scientists. | 47,700 | 47,700 | S |
| Life and related scientists......................................... | 45,000 | 48,000 | 42,300 |
| Physical and related scientists....................................... | 45,000 | 45,600 | 34,000 |
| Social and related scientists....................................... | 45,000 | 45,000 | 60,000 |
| Psychologists. | 52,000 | 54,000 | 50,000 |
| Engineers... | S | S | S |
| Non-S\&E occupations............................. | 48,000 | 49,000 | 48,000 |
| Private-for-profit: |  |  |  |
| Total. | 80,000 | 80,000 | 70,000 |
| Scientists........................................................ | 75,000 | 77,000 | 67,500 |
| Computer and information scientists............................. | 77,500 | 78,000 | 73,000 |
| Mathematical scientists.. | 80,000 | 81,000 | 72,000 |
| Life and related scientists........................................ | 72,000 | 73,000 | 65,000 |
| Physical and related scientists......................................... | 75,000 | 77,000 | 69,000 |
| Social and related scientists.......................................... | 85,000 | 95,000 | 66,000 |
| Psychologists......................................... | 70,000 | 80,000 | 60,000 |
| Engineers........................... | 75,700 | 77,000 | 70,000 |
| Non-S\&E occupations................................................ | 95,400 | 100,000 | 78,000 |
| Self-employed: |  |  |  |
| Total........................................................................... | 75,000 | 80,000 | 65,000 |
| Scientists. | 75,000 | 80,000 | 67,000 |
| Computer and information scientists.............................. | 50,000 | 50,000 | S |
| Mathematical scientists................................................. | S | S | S |
| Life and related scientists............................................. | 50,000 | 50,000 | S |
| Physical and related scientists.................................... | 95,000 | 96,000 | S |
| Social and related scientists........................................ | 50,000 | 50,000 | S |
| Psychologists................................................................... | 75,000 | 85,000 | 68,000 |
| Engineers.............................................................. | 120,000 | 120,000 | S |
| Non-S\&E occupations.... | 60,000 | 60,000 | 50,000 |

See explanatory information and SOURCE at end of table.

Table 45. Median annual salaries of doctoral scientists and engineers, by sector of employment, broad occupation, and sex 1997

| Sector/occupation | Page 2 of 2 |  |  |
| :---: | :---: | :---: | :---: |
|  | Total | Male | Female |
| Private not-for-profit: |  |  |  |
| Total................ | \$65,000 | \$70,000 | \$53,000 |
| Scientists. | 60,000 | 65,000 | 50,000 |
| Computer and information scientists. | 71,000 | 71,000 | S |
| Mathematical scientists... | 80,000 | 88,000 | S |
| Life and related scientists.. | 60,000 | 61,000 | 40,000 |
| Physical and related scientists. | 72,000 | 75,000 | S |
| Social and related scientists.... | 61,000 | 56,000 | 71,000 |
| Psychologists........... | 52,000 | 60,000 | 47,400 |
| Engineers..... | 80,000 | 80,500 | S |
| Non-S\&E occupations....... | 70,000 | 74,400 | 60,000 |
| Federal government: |  |  |  |
| Total................... | 71,000 | 72,600 | 64,000 |
| Scientists... | 68,400 | 70,000 | 61,000 |
| Computer and information scientists..... | 70,000 | 70,000 | S |
| Mathematical scientists. | 69,000 | 70,000 | 60,000 |
| Life and related scientists........ | 63,000 | 65,000 | 59,000 |
| Physical and related scientists.. | 75,000 | 75,000 | 63,400 |
| Social and related scientists... | 71,000 | 70,500 | 71,000 |
| Psychologists........... | 61,900 | 62,000 | 61,400 |
| Engineers. | 72,600 | 73,000 | 65,000 |
| Non-S\&E occupations... | 88,000 | 90,000 | 83,000 |
| State and local government: |  |  |  |
| Total.. | 54,000 | 54,000 | 52,400 |
| Scientists.. | 51,000 | 52,000 | 50,200 |
| Computer and information scientists... | 50,000 | S | S |
| Mathematical scientists... | S | S | S |
| Life and related scientists... | 46,000 | 46,000 | 45,000 |
| Physical and related scientists.. | 50,000 | 50,900 | S |
| Social and related scientists.... | 49,000 | 49,000 | 50,200 |
| Psychologists.. | 54,000 | 55,000 | 52,000 |
| Engineers.... | 52,000 | 51,000 | S |
| Non-S\&E occupations... | 59,800 | 60,000 | 55,500 |
| Other sector: |  |  |  |
| Total..................................................................... | 90,000 | 90,000 | 95,000 |
| Scientists................................................................. | 80,000 | 80,000 | 90,000 |
| Computer and information scientists... | S | S | S |
| Mathematical scientists................................................... | S | S | S |
| Life and related scientists... | S | S | S |
| Physical and related scientists............................... | S | S | S |
| Social and related scientists... | 100,000 | 100,000 | S |
| Psychologists....................................................... | S | S | S |
| Engineers...... | S | S | S |
| Non-S\&E occupations.................................................. | 100,000 | 100,000 | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases). .
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 46. Median annual salaries of doctoral scientists and engineers, by sector of employment, broad field of doctorate, and race/ethnicity: 1997

| Sector/field of doctorate | Total | White | Black | Asian or Pacific Islander | Hispanic | American Indian/ Alaskan Native |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Sectors: |  |  |  |  |  |  |
| Total.. | \$65,000 | \$65,500 | \$59,000 | \$65,000 | \$59,500 | \$56,000 |
| Sciences. | 62,000 | 63,500 | 57,000 | 57,600 | 56,000 | 54,000 |
| Computer and information sciences... | 72,000 | 72,000 | S | 72,000 | S | S |
| Mathematical sciences.... | 63,000 | 65,000 | 63,000 | 55,000 | 54,000 | S |
| Biological and agricultural sciences............... | 60,000 | 60,800 | 54,000 | 47,000 | 54,000 | 60,000 |
| Health sciences.... | 60,000 | 60,000 | 58,000 | 70,000 | 62,000 | S |
| Physical and related sciences..................... | 70,000 | 72,000 | 67,000 | 65,000 | 60,000 | 78,000 |
| Social and related sciences......... | 58,000 | 59,400 | 55,000 | 54,000 | 54,000 | 48,000 |
| Psychology... | 60,000 | 60,000 | 55,000 | 50,000 | 50,000 | 52,000 |
| Engineering.............................................. | 75,000 | 78,000 | 68,600 | 72,000 | 70,000 | S |
| Universities and 4-year colleges: |  |  |  |  |  |  |
| Total... | 55,000 | 57,000 | 50,000 | 50,000 | 50,000 | 49,000 |
| Sciences. | 54,000 | 55,000 | 50,000 | 45,000 | 49,800 | 49,000 |
| Computer and information sciences... | 57,000 | 55,000 | S | 60,000 | S | S |
| Mathematical sciences........................ | 57,000 | 60,000 | 53,000 | 45,000 | 46,000 | S |
| Biological and agricultural sciences.............. | 53,500 | 55,000 | 48,000 | 37,400 | 48,500 | S |
| Health sciences.. | 55,000 | 55,000 | 53,800 | 54,000 | 64,000 | S |
| Physical and related sciences. | 54,300 | 56,000 | 60,000 | 43,000 | 57,600 | S |
| Social and related sciences...... | 54,000 | 55,000 | 50,000 | 50,000 | 50,000 | 48,000 |
| Psychology.................... | 52,000 | 52,100 ${ }^{\circ}$ | 46,000 | 43,300 | 45,300 | S |
| Engineering............................................ | 68,000 | 70,000 | 60,000 | 65,000 | 59,700 | S |
| Other educational institutions: |  |  |  |  |  |  |
| Total....................................................... | 48,000 | 47,700 | 57,000 | 47,600 | 48,000 | S |
| Sciences.. | 48,000 | 48,000 | 57,000 | 48,000 | 49,000 | S |
| Computer and information sciences.... | S | S | S | S | S | S |
| Mathematical sciences... | 47,400 | 47,700 | S | S | S | S |
| Biological and agricultural sciences....... | 42,000 | 42,300 | S | S | S | S |
| Heath sciences............. | 49,000 | 50,000 | S | S | S | S |
| Physical and related sciences... | 43,100 | 41,000 | S | 50,000 | S | S |
| Social and related sciences... | 48,000 | 48,000 | S | S | S | S |
| Psychology..... | 55,000 | 57,000 | 57,000 | S | S | S |
| Engineering... | 42,000 | S | S | S | S | S |
| Private-for-profit: |  |  |  |  |  |  |
| Total...................................................... | 80,000 | 80,000 | 75,000 | 72,800 | 75,000 | 85,000 |
| Sciences.... | 80,000 | 80,000 | 80,000 | 70,300 | 75,000 | 85,000 |
| Computer and information sciences. | 85,000 | 85,000 | S | 85,000 | S | S |
| Mathematical sciences................................ | 82,000 | 85,000 | S | 69,200 | S | S |
| Biological and agricultural sciences..... | 76,000 | 79,000 | 80,000 | 70,000 | 68,000 | S |
| Health sciences.. | 85,000 | 87,000 | S | 76,600 | S | S |
| Physical and related sciences....................... | 79,000 | 80,000 | 70,000 | 70,000 | 75,000 | S |
| Social and related sciences...... | 89,900 | 91,000 | S | 67,000 | 200,000 | S |
| Psychology.......................................... | 76,000 | 77,000 | 80,000 | S | 60,000 | S |
| Engineering.................................................. | 80,000 | 85,000 | 73,500 | 75,000 | 75,000 | S |
| Self-employed: |  |  |  |  |  |  |
| Total... | 75,000 | 75,000 | 90,000 | 65,000 | 60,000 | S |
| Sciences... | 75,000 | 75,000 | 90,000 | 65,000 | 70,000 | S |
| Computer and information sciences...... | S | S | S | S | S | S |
| Mathematical sciences.. | 75,000 | 39,000 | S | S | S | S |
| Biological and agricultural sciences........ | 60,000 | 70,000 | S | S | S | S |
| Health sciences........................... | 80,000 | 80,000 | S | S | S | S |
| Physical and related sciences...................... | 80,000 | 80,000 | S | S | S | S |
| Social and related sciences...... | 52,000 | 52,000 | S | S | S | S |
| Psychology........... | 75,000 | 75,000 | S | S | S | S |
| Engineering........................................... | 80,000 | 91,000 | S | S | S | S |

[^24]Table 46. Median annual salaries of doctoral scientists and engineers, by sector of employment, broad field of doctorate, and racelethnicity 1997

| Sectorffield of doctorate | Total | White | Black |  | Page 2 of 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Asian or Pacific Islander | Hispanic | American Indian/ Alaskan Native |
| Private not-for-profit: |  |  |  |  |  |  |
| Total......................................................... | \$65,000 | \$65,000 | \$60,000 | \$60,000 | \$66,000 | S |
| Sciences... | 63,000 | 64,000 | 60,000 | 54,000 | 66,000 | S |
| Computer and information sciences...... | 86,600 | S | S | S | S | S |
| Mathematical sciences.......................... | 80,000 | 80,000 | S | S | S | S |
| Biological and agricultural sciences........... | 62,000 | 65,000 | S | 38,000 | S | S |
| Health sciences.... | 66,000 | 67,000 | S | S | S | S |
| Physical and related sciences...... | 71,500 | 73,000 | S | 70,000 | S | S |
| Social and related sciences........................ | 68,000 | 68,000 | 66,000 | S | S | S |
| Psychology......................................... | 55,000 | 56,000 | 55,000 | S | 52,000 | S |
| Engineering............................................ | 80,500 | 84,000 | S | 72,000 | S | S |
| Federal government: |  |  |  |  |  |  |
| Total.... | 71,000 | 71,000 | 70,000 | 70,000 | 66,700 | S |
| Sciences........... | 70,000 | 70,000 | 70,000 | 66,200 | 66,200 | S |
| Computer and information sciences....... | 70,000 | 71,000 | S | S | S | S |
| Mathematical sciences.............................. | 75,000 | 78,000 | S | S | S | S |
| Biological and agricultural sciences........ | 65,200 | 66,000 | S | 58,000 | S | S |
| Health sciences....... | 65,000 | 65,000 | S | S | S | S |
| Physical and related sciences. | 75,300 | 76,000 | S | 71,000 | 75,000 | S |
| Social and related sciences.......... | 72,600 | 74,200 | S | 61,000 | S | S |
| Psychology........... | 65,000 | 65,000 | S | S | S | S |
| Engineering............ | 78,000 | 78,500 | S | 76,000 | S | S |
| State and local government: |  |  |  |  |  |  |
| Total.............................. | 54,000 | 54,000 | 55,000 | 50,000 | 50,400 | S |
| Sciences... | 54,000 | 54,000 | 55,000 | 50,000 | 50,400 | S |
| Computer and information sciences... | S | S | S | S | S | S |
| Mathematical sciences.............. | S | S | S | S | S | S |
| Biological and agricultural sciences........ | 50,000 | 50,000 | S | 46,000 | S | S |
| Health sciences... | 55,000 | 55,000 | S | S | S | S |
| Physical and related sciences...................... | 50,900 | 52,000 | S | 50,000 | S | S |
| Social and related sciences......................... | 54,500 | 55,000 | S | 46,000 | S | S |
| Psychology....... | 54,000 | 54,000 | 55,000 | S | S | S |
| Engineering...... | 53,800 | 62,500 | S | 52,000 | S | S |
| Other sectors: |  |  |  |  |  |  |
| Total...................................................... | 90,000 | 90,000 | S | 72,100 | S |  |
| Sciences.. | 100,000 | 95,000 | S | S | S | S |
| Computer and information sciences............... |  | S | S | S | S | S |
| Mathematical sciences.............................. | S | S | S | S | S | S |
| Biological and agricultural sciences......... | S | S | S | S | S | S |
| Health sciences.... | S | S | S | S | S | S |
| Physical and related sciences..................... | S | S | S | S | S | S |
| Social and related sciences......................... | 100,000 | 100,000 | S | S | S | S |
| Psychology........................................... | S | S | S | S | S | S |
| Engineering.............................................. | 80,000 | S | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred:
Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Sector/occupation | Total | White | Black | Asian or Pacific Islander | Hispanic | American Indian/ Alaskan Native |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All Sectors: |  |  |  |  |  |  |
| Total. | \$65,000 | \$65,500 | \$59,000 | \$65,000 | \$59,500 | \$56,000 |
| Scientists...................................... | 60,000 | 60,000 | 54,000 | 57,000 | 55,000 | 51,100 |
| Computer and information scientists..... | 72,000 | 72,000 | 63,000 | 70,000 | 76,800 | S |
| Mathematical scientists...... | 59,000 | 60,000 | 69,000 | 50,000 | 52,500 | S |
| Life and related scientists........... | 57,000 | 59,000 | 51,600 | 45,000 | 50,000 | 54,000 |
| Physical and related scientists................... | 65,000 | 67,000 | 61,300 | 60,000 | 60,000 | S |
| Social and related scientists....... | 55,000 | 55,000 | 50,000 | 52,000 | 55,000 | 48,000 |
| Psychologists. | 56,000 | 57,300 | 50,000 | 47,600 | 48,000 | 52,000 |
| Engineers............................................... | 72,600 | 75,000 | 67,000 | 70,000 | 68,000 | S |
| Non-S\&E occupations..... | 78,000 | 80,000 | 66,000 | 78,000 | 75,000 | 60,000 |
| Universities and 4-year colleges: |  |  |  |  |  |  |
| Total. | 55,000 | 57,000 | 50,000 | 50,000 | 50,000 | 49,000 |
| Scientists................................................... | 52,000 | 54,000 | 48,000 | 44,000 | 48,000 | 49,000 |
| Computer and information scientists............. | 60,000 | 60,000 | S | 60,000 | S | S |
| Mathematical scientists............................... | 53,900 | 56,000 | 53,000 | 45,000 | 46,000 | S |
| Life and related scientists................. | 52,000 | 54,000 | 45,500 | 35,000 | 45,400 | S |
| Physical and related scientists.............. | 52,300 | 54,000 | 47,000 | 45,000 | 51,000 | S |
| Social and related scientists....... | 52,000 | 53,000 | 50,000 | 50,000 | 50,000 | 48,000 |
| Psychologists........... | 50,000 | 50,000 | 45,000 | 43,000 | 45,300 | S |
| Engineers.............................................. | 65,400 | 68,000 | 60,000 | 65,000 | 60,000 | S |
| Non-S\&E occupations........................................ | 66,000 | 68,000 | 58,000 | 56,000 | 57,000 | 53,400 |
| Other educational institutions: |  |  |  |  |  |  |
| Total..................................... | 48,000 | 47,700 | 57,000 | 47,600 | 48,000 | S |
| Scientists................. | 48,000 | 48,000 | S | 48,000 | S | S |
| Computer and information scientists............. | S | S | S | S | S | S |
| Mathematical scientists.............................. | 47,700 | 50,000 | S | S | S | S |
| Life and related scientists..................... | 45,000 | 45,000 | S | S | S | S |
| Physical and related scientists.. | 45,000 | 42,000 | S | 52,000 | S | S |
| Social and related scientists...................... | 45,000 | 45,000 | S | S | S | S |
| Psychologists.......... | 52,000 | 52,000 | S | S | S | S |
| Engineers................... | S | S | S | S | S | S |
| Non-S\&E occupations... | 48,000 | 47,000 | 68,500 | 37,000 | S | S |
| Private-for-profit: |  |  |  |  |  |  |
| Total... | 80,000 | 80,000 | 75,000 | 72,800 | 75,000 | 85,000 |
| Scientists..................................... | 75,000 | 77,000 | 73,000 | 70,000 | 71,000 | 71,000 |
| Computer and information scientists...... | 77,500 | 80,000 | S | 74,000 | 80,000 | S |
| Mathematical scientists... | 80,000 | 82,500 | S | 69,000 | S | S |
| Life and related scientists..................... | 72,000 | 73,000 | S | 70,000 | 65,000 | S |
| Physical and related scientists............. | 75,000 | 78,000 | 70,000 | 67,000 | 67,000 | S |
| Social and related scientists........... | 85,000 | 85,000 | S | 65,000 | S | S |
| Psychologists........................................... | 70,000 | 70,000 | 70,000 | S | S | S |
| Engineers.............................................. | 75,700 | 80,000 | 73,500 | 72,000 | 72,000 | - S |
| Non-S\&E occupations.......................... | 95,400 | 97,000 | 100,000 | 90,000 | 80;000 | S |
| Self-employed: |  | 7500 |  |  |  |  |
| Total....................................................... | 75,000 | 75,000 | 90,000 | 65,000 | 60,000 | S |
| Scientists. | 75,000 | 75,000 | S | 70,500 | 60,000 | S |
| Computer and information scientists............ | 50,000 | 50,000 | S | S | S | S |
| Mathematical scientists................................ | S | S | S | S | S | S |
| Life and related scientists......................... | 50,000 | 50,000 | S | S | S | S |
| Physical and related scientists.................... | 95,000 | 80,000 | S | S | S | S |
| Social and related scientists..................... | 50,000 | 50,000 | S | S | S | S |
| Psychologists............... | 75,000 | 75,000 | S | S | S | S |
| Engineers................................................ | 120,000 | 120,000 | S | S | S | S |
| Non-S\&E occupations.............................. | 60,000 | 60,000 | S | 60,000 | S | S |

[^25]| Sector/occupation | Total | White | Black | Page 2 of 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Asian or Pacific Islander | Hispanic | American Indian/ Alaskan Native |
| Private not-for-profit: |  |  |  |  |  |  |
| Total...................................................... | \$65,000 | \$65,000 | \$60,000 | \$60,000 | \$66,000 | S |
| Scientists........................................... | 60,000 | 60,000 | 60,000 | 56,000 | 52,000 | S |
| Computer and information scientists............ | 71,000 | 70,000 | S | 82,500 | S | S |
| Mathematical scientists............................ | 80,000 | 80,000 | S | S | S | S |
| Life and related scientists......................... | 60,000 | 60,000 | S | 35,000 | S | S |
| Physical and related scientists...................... | 72,000 | 74,000 | S | 70,000 | S | S |
| Social and related scientists....................... | 61,000 | 63,000 | S | S | S | S |
| Psychologists........................... | 52,000 | 52,500 | S | S | S | S |
| Engineers............................................. | 80,000 | 81,000 | S | 68,000 | S | S |
| Non-S\&E occupations................................. | 70,000 | 70,000 | 66,000 | 60,000 | 75,000 | S |
| Federal government: |  |  |  |  |  |  |
| Total......................... | 71,000 | 71,000 | 70,000 | 70,000 | 66,700 | S |
| Scientists............................................ | 68,400 | 69,000 | 68,700 | 65,600 | 63,000 | S |
| Computer and information scientists............ | 70,000 | 68,000 | S | 75,000 | S | S |
| Mathematical scientists.............................. | 69,000 | 71,000 | S | S | S | S |
| Life and related scientists...................... | 63,000 | 65,000 | S | 57,000 | S | S |
| Physical and related scientists....... | 75,000 | 75,000 | S | 71,000 | 75,000 | S |
| Social and related scientists....................... | 71,000 | 72,000 | S | S | S | S |
| Psychologists............................. | 61,900 | 61,500 | S | S | S | S |
| Engineers.............................................. | 72,600 | 75,000 | S | 69,800 | S | S |
| Non-S\&E occupations................................. | 88,000 | 88,500 | 80,000 | 80,000 | S | S |
| State and local government: |  |  |  |  |  |  |
| Total. | 54,000 | 54,000 | 55,000 | 50,000 | 50,400 | S |
| Scientists................................................ | 51,000 | 52,000 | 50,000 | 46,000 | S | S |
| Computer and information scientists............. | 50,000 | 45,000 | S | S | S | S |
| Mathematical scientists..................... | S | S | S | S | S | S |
| Life and related scientists.............. | 46,000 | 45,500 | S | S | S | S |
| Physical and related scientists................... | 50,000 | 50,900 | S | S | S | S |
| Social and related scientists...................... | 49,000 | 50,200 | S | 46,000 | S | S |
| Psychologists.................................. | 54,000 | 54,000 | S | S | S | S |
| Engineers............................................... | 52,000 | 53,000 | S | 52,000 | S | S |
| Non-S\&E occupations............................... | 59,800 | 59,000 | 66,000 | 60,000 | S | S |
| Other sector: |  |  |  |  |  |  |
| Total...................................................... | 90,000 | 90,000 | S | 72,100 | S | S |
| Scientists................................................... | 80,000 | 90,000 | S | S | S | S |
| Computer and information scientists............ | S | S | S | S | S | S |
| Mathematical scientists................................. | S | S | S | S | S | S |
| Life and related scientists............. | S | S | S | S | S | S |
| Physical and related scientists.................... | S | S | S | S | S | S |
| Social and related scientists...................... | 100,000 | 100,000 | S | S | S | S |
| Psychologists..................... | S | S | S | S | S | S |
| Engineers............................................. | S | - S | S | S | S | S |
| Non-S\&E occupations............................... | 100,000 | 100,000 | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 48. Median annual salaries of doctoral scientists and engineers, by demographic characteristics, racelethnicity, and sex: 1997

| Characteristics |  |  |  |  |  |  | Page 1 of 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total |  |  | White |  |  | Black |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total. | \$65,000 | \$70,000 | \$53,000 | \$65,500 | \$70,000 | \$53,000 | \$59,000 | \$62,000 | \$52,000 |
| Age: |  |  |  |  |  |  |  |  |  |
| Under 35. | 47,000 | 50,000 | 39,000 | 45,000 | 48,000 | 38,700 | 48,000 | 48,000 | 46,000 |
| 35-39. | 57,000 | 60,000 | 50,000 | 57,000 | 60,000 | 49,000 | 50,000 | 52,000 | 46,000 |
| 40-44. | 63,000 | 66,000 | 55,000 | 64,000 | 67,000 | 55,000 | 50,000 | 50,000 | 45,000 |
| 45-49. | 70,000 | 73,000 | 59,000 | 70,000 | 73,000 | 59,000 | 68,000 | 70,000 | 65,000 |
| 50-54. | 74,000 | 77,000 | 58,000 | 74,200 | 77,900 | 58,200 | 65,000 | 70,000 | 55,600 |
| 55-59.. | 75,000 | 78,000 | 59,000 | 76,000 | 80,000 | 59,000 | 66,000 | 68,500 | S |
| 60-64.. | 75,000 | 78,000 | 58,800 | 75,000 | 78,500 | 58,800 | 69,000 | 70,000 | S |
| 65-75.. | 71,000 | 74,000 | 60,000 | 71,000 | 74,000 | 60,000 | 56,000 | 56,000 | S |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total....... | 67,000 | 70,000 | 54,000 | 66,000 | 70,000 | 53,500 | 60,000 | 65,000 | 53,000 |
| U.S. native. | 65,000 | 70,000 | 53,000 | 65,500 | 70,000 | 53,000 | 59,000 | 63,000 | 53,000 |
| U.S. naturalized. | 72,000 | 75,000 | 58,000 | 71,600 | 75,000 | 56,000 | 69,000 | 72,000 | 50,000 |
| Non-U.S. total..................... | 55,000 | 58,000 | 43,000 | 60,000 | 60,000 | 46,200 | 50,000 | 50,000 | S |
| Non-U.S., permanent resident... | 57,200 | 60,000 | 45,000 | 60,000 | 62,000 | 47,800 | 50,000 | 50,000 | S |
| Non-U.S., temporary resident.... | 46,000 | 49,000 | 37,000 | 45,000 | 48,000 | 40,000 | 37,000 | 41,000 | S |
| Employer location: |  |  |  |  |  |  |  |  |  |
| New England... | 65,000 | 70,000 | 50,000 | 67,000 | 71,000 | 50,000 | 55,000 | 60,000 | S |
| Middle Atlantic.. | 70,000 | 73,000 | 58,000 | 70,000 | 74,000 | 58,000 | 65,000 | 66,000 | 56,000 |
| East North Central. | 63,000 | 67,500 | 50,000 | 64,000 | 68,000 | 50,000 | 54,900 | 60,000 | 44,800 |
| West North Central... | 57,000 | 60,000 | 47,200 | 57,500 | 60,000 | 48,500 | 53,000 | 56,000 | S |
| South Atlantic... | 67,000 | 70,000 | 55,000 | 69,000 | 72,000 | 55,000 | 60,000 | 63,000 | 55,000 |
| East South Central... | 58,600 | 60,000 | 50,000 | 60,000 | 62,000 | 50,000 | 53,000 | 56,500 | 46,000 |
| West South Central... | 61,000 | 65,000 | 50,000 | 62,500 | 66,400 | 50,000 | 50,000 | 50,000 | 49,000 |
| Mountain. | 65,000 | 67,000 | 49,000 | 65,000 | 70,000 | 49,000 | 64,000 | 64,000 | S |
| Pacific.... | 70,000 | 72,600 | 57,000 | 70,000 | 72,300 | 59,000 | 61,300 | 70,000 | 51,600 |
| U.S. teritories and other areas.... | 50,000 | 50,000 | 42,000 | 60,000 | 60,000 | S | S | S | S |
| Place of birth: |  |  |  |  |  |  |  |  |  |
| U.S..... | 65,000 | 70,000 | 53,000 | 65,900 | 70,000 | 53,000 | 59,000 | 63,000 | 53,000 |
| Europe. | 65,000 | 68,400 | 50,000 | 65,000 | 68,400 | 50,000 | S | S | S |
| Asia. | 65,000 | 67,000 | 53,000 | 65,000 | 68,000 | 55,000 | S | S | S |
| North America... | 65,000 | 70,000 | 53,000 | 66,000 | 70,000 | 55,000 | S | S | S |
| Central America... | 56,000 | 57,000 | 48,000 | 50,000 | 50,000 | S | S | S | S |
| Caribbean.. | 67,000 | 70,000 | 48,000 | S | S | S | 67,000 | 68,000 | 53,000 |
| South America. | 59,000 | 69,000 | 49,600 | 55,000 | 55,000 | 53,000 | S | S | S |
| Africa. | 62,000 | 63,000 | 50,000 | 65,000 | 70,000 | 52,000 | 55,000 | 56,000 | S |
| Oceania................................ | 75,000 | 75,000 | S | 75,000 | 75,000 | S | S | S | S |

[^26]| Characteristics |  |  |  |  |  |  |  |  | Page 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Asian or Pacific Islander |  |  | Hispanic |  |  | American Indian/Alaskan Native |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total... | \$65,000 | \$67,000 | \$51,000 | \$59,500 | \$65,000 | \$47,000 | \$56,000 | \$58,000 | \$50,000 |
| Age: |  |  |  |  |  |  |  |  |  |
| Under 35...... | 54,000 | 57,000 | 40,000 | 42,000 | 43,500 | 38,000 | S | S | S |
| 35-39. | 60,000 | 60,000 | 53,000 | 56,000 | 58,000 | 53,000 | S | S | S |
| 40-44... | 65,000 | 68,000 | 57,000 | 57,700 | 60,000 | 50,000 | 45,200 | S | S |
| 45-49................................... | 73,200 | 75,000 | 61,600 | 60,000 | 66,500 | 48,000 | 63,000 | S | S |
| 50-54............................. | 77,500 | 80,000 | 60,000 | 70,000 | 73,000 | 47,000 | 67,000 | 72,000 | S |
| 55-59. | 75,000 | 75,000 | 60,000 | 70,000 | 70,000 | S | 49,000 | 49,000 | S |
| 60-64...... | 75,000 | 78,000 | 51,000 | 68,700 | 69,000 | S | S | S | S |
| 65-75... | 74,000 | 74,000 | S | S | S | S | S | S | S |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total............................ | 72,800 | 75,000 | 60,000 | 60,000 | 66,000 | 48,000 | 56,000 | 60,000 | 50,000 |
| U.S. native...... | 65,000 | 70,000 | 50,000 | 58,000 | 65,000 | 49,000 | 56,000 | 60,000 | 50,000 |
| U.S. naturalized. | 75,000 | 75,000 | 63,000 | 65,000 | 70,000 | 46,000 | S | S | S |
| Non-U.S. total. | 55,000 | 57,000 | 43,000 | 55,000 | 57,000 | 36,500 | S | S | S |
| Non-U.S., permanent resident... | 57,000 | 60,000 | 45,000 | 58,000 | 60,000 | 44,000 | S | S | S |
| Non-U.S., temporary resident.... | 47,000 | 50,000 | 37,000 | 37,000 | 39,000 | S | S | S | S |
| Employer location: |  |  |  |  |  |  |  |  |  |
| New England........... | 58,000 | 64,000 | 40,000 | 63,200 | 70,000 | S | S | S | S |
| Middle Atlantic... | 70,000 | 72,000 | 60,000 | 67,800 | 70,000 | 55,000 | S | S | S |
| East North Central... | 63,000 | 65,000 | 50,000 | 62,000 | 67,000 | 48,000 | 49,000 | S | S |
| West North Central... | 55,000 | 57,000 | 39,000 | 56,000 | 56,000 | S | S | S | S |
| South Atlantic......... | 65,000 | 66,700 | 50,000 | 60,000 | 65,000 | 49,600 | 58,000 | S | S |
| East South Central.. | 54,000 | 55,000 | 43,000 | 60,000 | 60,000 | S | S | S | S |
| West South Central. | 60,000 | 60,000 | 56,000 | 53,000 | 60,000 | 44,000 | 49,000 | 49,000 | S |
| Mountain.... | 60,000 | 60,000 | 50,000 | 52,000 | 58,900 | S | 60,000 | 63,000 | S |
| Pacific... | 70,000 | 73,000 | 55,000 | 60,000 | 78,000 | 54,000 | 56,000 | S | S |
| U.S. teritories and other areas.... | 50,000 | S | S | 45,000 | 48,000 | 40,000 | S | S | S |
| Place of birth: |  |  |  |  |  |  |  |  |  |
| U.S. | 65,000 | 70,000 | 50,000 | 56,000 | 64,000 | 48,000 | 56,000 | 60,000 | 50,000 |
| Europe... | 54,000 | S | $s$ | 70,000 | 70,000 | S | S | S | S |
| Asia. | 65,000 | 67,000 | 52,000 | S | S | S | S | S | S |
| North America.... | S | S | S | S | S | S | S | S | S |
| Central America. | S | S | S | 57,000 | 60,000 | 48,000 | S | S | S |
| Caribbean..... | S | S | S | 64,000 | 72,000 | 45,300 | S | S | S |
| South America.... | S | S | S | 60,000 | 70,000 | 46,800 | S | S | S |
| Africa... | S | S | S | S | S | S | S | S | S |
| Oceania................................ | S | S | S | S | S | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
'Other' race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 49. Median annual salaries of doctoral scientists and engineers, by demographic characteristics and citizenship status: 1997

Page 1 of 2

| Characteristics | Total | U.S. Citizen |  |  | Non-U.S. Citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | Temporary resident |
| Total........................................ | \$65,000 | \$67,000 | \$65,000 | \$72,000 | \$55,000 | \$57,200 | \$46,000 |
| Sex: <br> Men. $\qquad$ <br> Women $\qquad$ |  |  |  |  |  |  |  |
|  | 70,000 | 70,000 | 70,000 | 75,000 | 58,000 | 60,000 | 49,000 |
|  | 53,000 | 54,000 | 53,000 | 58,000 | 43,000 | 45,000 | 37,000 |
| Race/ethnicity: |  |  |  |  |  |  |  |
| White.. | 65,500 | 66,000 | 65,500 | 71,600 | 60,000 | 60,000 | 45,000 |
| Black. | 59,000 | 60,000 | 59,000 | 69,000 | 50,000 | 50,000 | S |
| Asian or Pacific Islander. | 65,000 | 72,800 | 65,000 | 75,000 | 55,000 | 57,000 | 47,000 |
| Hispanic................................................. | 59,500 | 60,000 | 58,000 | 65,000 | 55,000 | 58,000 | 37,000 |
| American Indian/Alaskan Native ...... | 56,000 | 56,000 | 56,000 | S | S | S | S |
| Age: |  |  |  |  |  |  |  |
| Under 35............................................... | 47,000 | 45,000 | 44,400 | 52,000 | 51,300 | 55,000 | 48,000 |
| 35-39... | 57,000 | 57,800 | 56,000 | 67,000 | 55,000 | 57,000 | 46,000 |
| 40-44. | 63,000 | 65,000 | 63,000 | 70,000 | 56,000 | 58,000 | 40,000 |
| 45-49. | 70,000 | 70,000 | 70,000 | 75,000 | 58,000 | 59,000 | S |
| 50-54. | 74,000 | 75,000 | 73,400 | 80,000 | 62,500 | 62,500 | S |
| 55-59.. | 75,000 | 75,000 | 75,000 | 75,000 | 65,000 | 65,000 | S |
| 60-64... | 75,000 | 75,000 | 75,000 | 79,000 | 68,800 | 68,800 | S |
| 65-75. | 71,000 | 72,000 | 70.100 | 75,900 | 62,000 | 62,000 | S |
| Employer location: |  |  |  |  |  |  |  |
| New England..... | 65,000 | 67,500 | 67,000 | 71,600 | 51,000 | 54,000 | 36,500 |
| Middle Atantic. | 70,000 | 70,000 | 70,000 | 76,000 | 62,000 | 63,000 | 50,000 |
| East North Central... | 63,000 | 65,000 | 63,000 | 72,000 | 55,000 | 57,800 | 45,000 |
| West North Central....... | 57,000 | 58,000 | 57,000 | 65,000 | 48,000 | 49,800 | 37,000 |
| South Atlantic.... | 67,000 | 69,000 | 68,500 | 70,000 | 50,000 | 54,000 | 40,000 |
| East South Central... | 58,600 | 60,000 | 60,000 | 60,000 | 43,200 | 43,300 | S |
| West South Central. | 61,000 | 62,400 | 62,200 | 64,100 | 56,000 | 58,300 | 50,000 |
| Mountain. | 65,000 | 65,000 | 65,000 | 69,500 | 50,000 | 52,000 | 50,000 |
| Pacific. | 70,000 | 70,000 | 70,000 | 78,000 | 61,300 | 65,000 | 51,200 |
| U.S. territories and other areas..................... | 50,000 | 50,000 | 50,000 | 54,000 | 37,000 | S | S |
| Field of doctorate: |  |  |  |  |  |  |  |
| Sciences.......................................................... | 62,000 | 64,000 | 63,000 | 69,000 | 49,000 | 51,000 | 37,000 |
| Computer and mathematical sciences.......... | 65,000 | 68,000 | 68,000 | 65,600 | 57,000 | 60,000 | 50,000 |
| Computer and information sciences........... | 72,000 | 75,000 | 72,000 | 80,000 | 70,000 | 70,000 | 66,000 |
| Mathematical sciences............................ | 63,000 | 65,000 | 66,000 | 63,000 | 45,000 | 45,000 | 43,000. |
| Biological and agricultural sciences....... | 60,000 | 61,000 | 60,000 | 66,000 | 35,000 | 38,000 | 30,000 |
| Agricultural and food sciences.................. | 60,000 | 61,000 | 61,000 | 61,500 | 45,000 | 49,800 | S |
| Biological sciences......... | 60,000 | 61,000 | 60,000 | 67,000 | 34,000 | 35,000 | 29,500 |
| Environmental life sciences...................... | 60,000 | 60,000 | 60,000 | 69,500 | 39,700 | S | S |

[^27]Table 49. Median annual salaries of doctoral scientists and engineers, by demographic characteristics and citizenship status: 1997

| Characteristics | Total | U.S. Citizen |  |  | Non-U.S. Citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | -Temporary resident |
| Health sciences. | \$60,000 | \$61,000 | \$60,000 | \$77,000 | \$58,000 | \$58,000 | \$52,000 |
| Physical and related sciences..................... | 70,000 | 72,000 | 72,000 | 73,000 | 55,000 | 56,200 | 35,800 |
| Chemistry, except biochemistry. | 70,500 | 72,900 | 73,000 | 72,000 | 56,000 | 57,200 | 27,000 |
| Earth/atmos/ocean sciences..................... | 60,000 | 62,000 | 62,000 | 60,000 | 48,000 | 48,000 | S |
| Physics and astronomy... | 73,000 | 75,000 | 75,000 | 76,000 | 55,000 | 60,000 | 39,800 |
| Social sciences........................................ | 58,000 | 59,000 | 58,000 | 64,000 | 50,000 | 53,000 | 45,000 |
| Economics. | 69,000 | 70,000 | 70,000 | 66,000 | 62,000 | 61,000 | 62,500 |
| Political and related sciences................... | 58,000 | 60,000 | 60,000 | 68,000 | 41,000 | 44,000 | S |
| Sociology.............................................. | 53,300 | 54,000 | 54,000 | 54,000 | 39,400 | 39,400 | S |
| Other social sciences. | 52,000 | 52,000 | 52,000 | 61,000 | 43,500 | 48,000 | 42,000 |
| Psychology.............................................. | 60,000 | 60,000 | 60,000 | 55,000 | 50,000 | 52,000 | S |
| Engineering................................................ | 75,000 | 80,000 | 79,500 | 80,000 | 65,000 | 65,000 | 59,700 |
| Aerospace/aeronautical engineering........... | 75,000 | 78,500 | 79,000 | 76,000 | 56,900 | 59,100 | S |
| Chemical engineering............................... | 79,000 | 81,000 | 80,000 | 81,800 | 66,000 | 70,000 | 63,000 |
| Civil/architectural engineering.................... | 69,000 | 72,000 | 70,000 | 75,900 | 52,000 | 55,000 | 47,000 |
| Electrical/computer engineering.................. | 80,000 | 83,000 | 84,000 | 80,000 | 70,000 | 70,000 | 67,500 |
| Materials/metallurgical engineering............. | 75,000 | 78,600 | 78,500 | 80,000 | 63,000 | 65,000 | 51,000 |
| Mechanical engineering............................ | 73,000 | 75,000 | 75,000 | 76,000 | 63,000 | 65,000 | 51,000 |
| Other engineering..................................... | 75,000 | 77,900 | 78,000 | 77,000 | 59,000 | 60,000 | 55,000 |
| Place of birth: |  |  |  |  |  |  |  |
| U.S...... | 65,000 | 65,000 | 65,000 | 55,000 | 46,500 | 70,000 | S |
| Europe. | 65,000 | 70,000 | 59,000 | 70,000 | 60,000 | 60,000 | 43,000 |
| Asia....................................................... | 65,000 | 74,000 | 62,000 | 75,000 | 55,000 | 57,000 | 47,000 |
| North America.. | 65,000 | 70,000 | 62,000 | 71,600 | 60,000 | 65,000 | 41,000 |
| Central America........................................ | 56,000 | 60,000 | 60,000 | 60,000 | 49,000 | 55,000 | S |
| Caribbean.. | 67,000 | 68,000 | S | 68,000 | 62,500 | 62,500 | S |
| South America.. | 59,000 | 65,000 | 55,000 | '65,000 | 55,000 | 56,000 | 48,000 |
| Africa.. | 62,000 | 72,000 | 72,000 | 72,000 | 49,500 | 48,000 | 60,000 |
| Oceania................................................... | 75,000 | 80,000 | S | 85,000 | 70,000 | 70,000 | S |

[^28]SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Self-employed | Private not-forprofit | Federal government | State and local government | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | Other <br> sector |
| Total. | \$65,000 | \$55,000 | \$48,000 | \$80,000 | \$75,000 | \$65,000 | \$71,000 | \$54,000 | \$90,000 |
| Sex: |  |  |  |  |  |  |  |  |  |
| Men. | 70,000 | 60,000 | 48,600 | 80,000 | 80,000 | 70,000 | 72,600 | 54,000 | 90,000 |
| Women... | 53,000 | 46,100 | 46,000 | 70,000 | 65,000 | 53,000 | 64,000 | 52,400 | 95,000 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |
| White... | 65,500 | 57,000 | 47,700 | 80,000 | 75,000 | 65,000 | 71,000 | 54,000 | 90,000 |
| Black. | 59,000 | 50,000 | 57,000 | 75,000 | 90,000 | 60,000 | 70,000 | 55,000 | S |
| Asian or Pacific Islander. | 65,000 | 50,000 | 47,600 | 72,800 | 65,000 | 60,000 | 70,000 | 50,000 | 72,100 |
| Hispanic... | 59,500 | 50,000 | 48,000 | 75,000 | 60,000 | 66,000 | 66,700 | 50,400 | S |
| American Indian/Alaskan Native .. | 56,000 | 49,000 | S | 85,000 | S | S | S | S | S |
| Age: |  |  |  |  |  |  |  |  |  |
| Under 35. | 47,000 | 36,000 | 33,000 | 65,000 | 45,000 | 44,000 | 47,400 | 43,000 | S |
| 35-39. | 57,000 | 45,000 | 43,500 | 72,000 | 70,000 | 55,000 | 60,000 | 50,000 | 80,000 |
| 40-44... | 63,000 | 53,000 | 45,000 | 80,000 | 80,000 | 61,000 | 66,000 | 53,000 | 95,000 |
| 45-49.. | 70,000 | 58,500 | 48,000 | 90,000 | 75,000 | 75,000 | 72,000 | 55,000 | 80,000 |
| 50-54... | 74,000 | 65,000 | 50,300 | 90,000 | 80,000 | 76,000 | 80,000 | 55,000 | 72,100 |
| 55-59. | 75,000 | 69,600 | 54,000 | 93,000 | 80,000 | 80,000 | 84,000 | 60,000 | 100,000 |
| 60-64. | 75,000 | 70,000 | 52,000 | 89,500 | 80,000 | 70,000 | 85,000 | 54,600 | S |
| 65-75.. | 71,000 | 74,000 | 54,000 | 76,000 | 35,000 | 55,000 | 85,000 | 54,000 | S |
| Citizenship status: |  |  |  |  |  |  |  |  |  |
| U.S. total... | 67,000 | 57,000 | 48,000 | 80,000 | 75,000 | 66,000 | 72,000 | 54,000 | 80,000 |
| U.S. native. | 65,000 | 56,000 | 48,000 | 80,000 | 75,000 | 65,000 | 71,000 | 54,000 | 80,000 |
| U.S. naturalized.. | 72,000 | 63,000 | 43,000 | 80,000 | 70,000 | 75,000 | 73,200 | 53,000 | 75,000 |
| Non-U.S. total. | 55,000 | 43,000 | 45,000 | 67,000 | 70,000 | 49,000 | 48,000 | 47,000 | 100,000 |
| Non-U.S., permanent resident... | 57,200 | 45,000 | 48,000 | 68,000 | 70,000 | 49,000 | 50,000 | 48,000 | 90,000 |
| Non-U.S., temporary resident.... | 46,000 | 34,000 | S | 63,000 | S | 43,000 | 46,000 | S | S |
| Employer location: |  |  |  |  |  |  |  |  |  |
| New England.... | 65,000 | 56,000 | 49,000 | 80,000 | 80,000 | 60,000 | 70,000 | 54,000 | S |
| Middle Atlantic.. | 70,000 | 57,700 | 58,000 | 83,000 | 80,000 | 66,000 | 69,000 | 56,400 | S |
| East North Central... | 63,000 | 55,000 | 50,000 | 77,000 | 70,000 | 60,000 | 67,000 | 53,000 | S |
| West North Central. | 57,000 | 51,500 | 45,000 | 72,000 | 60,000 | 62,000 | 61,500 | 48,000 | S |
| South Atlantic... | 67,000 | 56,000 | 45,100 | 78,200 | 60,000 | 70,000 | 75,000 | 53,000 | 100,000 |
| East South Central. | 58,600 | 54,000 | 38,400 | 74,900 | 60,000 | 50,000 | 66,200 | 48,000 | S |
| West South Central.............. | 61,000 | 54,000 | 41,000 | 75,000 | 80,000 | 60,000 | 65,000 | 50,000 | S |
| Mountain. | 65,000 | 55,000 | 45,000 | 76,000 | 65,000 | 66,000 | 71,000 | 48,000 | S |
| Pacific. | 70,000 | 60,000 | 48,000 | 81,000 | 75,000 | 70,800 | 70,000 | 55,000 | S |
| U.S. teritories and other areas..... | 50,000 | 45,600 | S | 70,000 | S | S | S | S | S |

[^29]Table 50. Median annual salaries of doctoral scientists and engineers, by demographic characteristics and sector of employment 1997

| Page 2 of 2 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private- <br> for- <br> profit | $\begin{gathered} \text { Self- } \\ \text { employed } \end{gathered}$ | Private <br> not-for- <br> profit | Federal govemment | State and local government | Other <br> sector |
| Place of birth: |  |  |  |  |  |  |  |  |  |
| U.S. | \$65,000 | \$56,000 | \$48,000 | \$80,500 | \$75,000 | \$65,000 | \$71,100 | \$54,000 | \$80,000 |
| Europe..... | 65,000 | 57,000 | 50,000 | 75,000 | 75,000 | 70,000 | 65,800 | 50,000 | S |
| Asia. | 65,000 | 50,000 | 43,000 | 74,000 | 65,000 | 61,000 | 70,000 | 50,000 | 75,000 |
| North America. | 65,000 | 53,000 | S | 85,000 | 69,000 | 56,700 | S | 74,000 | S |
| Central America. | 56,000 | 55,000 | S | 67,000 | S | S | S | S | S |
| Caribbean. | 67,000 | 50,000 | S | 72,000 | S | S | S | S | S |
| South America... | 59,000 | 50,000 | S | 75,000 | S | S | S | S | S |
| Africa........... | 62,000 | 50,000 | S | 80,000 | S | 66,000 | 63,400 | S | S |
| Oceania...................... | 75,000 | 70,000 | S | 75,000 | S | S | S | S | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred. Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.
Table 51. Median annual salaries of doctoral scientists and engineers, by demographic characteristics and primary work activity: 1997

| Characteristics |  |  |  |  |  |  |  |  |  |  | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Research and development |  |  |  |  | Teaching | Management, sales, and administration | Computer applications | Professional services | Other activities |
|  |  | Total | Applied research | $\begin{gathered} \hline \text { Basic } \\ \text { research } \end{gathered}$ | Development | Design |  |  |  |  |  |
| Total.. | \$65,000 | \$68,000 | \$70,000 | \$57,000 | \$75,000 | \$75,000 | \$52,000 | \$82,000 | \$70,000 | \$65,000 | \$65,000 |
| Sex: |  |  |  |  |  |  |  |  |  |  |  |
| Men................................. | 70,00053,000 | $\begin{aligned} & 70,000 \\ & 55,000 \end{aligned}$ | $\begin{aligned} & 72,000 \\ & 60,000 \end{aligned}$ | $\begin{aligned} & 60,000 \\ & 43,000 \end{aligned}$ | 68,000 | $\begin{aligned} & 75,000 \\ & 65,000 \end{aligned}$ | 55,000 | 86,000 | 71,000 | 72,000 | 70,000 |
| Women.................................. |  |  |  |  |  |  | 45,000 | 65,000 | 60,000 | 55,000 | 58,000 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |  |  |
| White....................................... | 65,500 | 70,000 | 70,000 | 60,000 | 80,000 | 75,000 | 52,000 | 84,000 | 72,000 | 65,000 | 67,000 |
| Black... | 59,000 | 62,500 | 65,000 | 50,000 | 70,000 | S | 50,000 | 72,000 | 63,000 | 62,000 | 65,000 |
| Asian or Pacific Islander.. | 65,000 | 65,000 | 65,000 | 42,000 | 71,000 | 70,000 | 51,000 | 82,000 | 70,000 | 60,000 | 62,000 |
| Hispanic................................ | $\begin{aligned} & 59,500 \\ & 56,000 \end{aligned}$ | $\begin{aligned} & 60,000 \\ & 60,000 \end{aligned}$ | $\begin{aligned} & 65,000 \\ & 53,000 \end{aligned}$ | $s$ |  | S | 49,000 | 75,000 | 70,000 | 60,000 | 60,000 |
| American Indian/Alaskan Native ... |  |  |  |  | $\mathrm{s}$ | - S | 48,000 | 72,000 | S | 58,000 | S |
| Age: |  |  |  |  |  |  |  |  |  |  |  |
| Under 35.... | 47,000 | 48,000 | 55,000 | 32,000 | 67,000 | 65,000 | 38,000 | 60,000 | 65,000 | 41,000 | 48,000 |
| 35-39.... | 57,000 | 60,000 | 62,000 | 48,000 | 70,000 | 70,000 | 43,000 | 70,200 | 67,000 | 55,000 | 60,000 |
| 40-44.. | $\begin{aligned} & 63,000 \\ & 70,000 \end{aligned}$ | 67,000 | 68,000 | 59,600 | 78,000 | 72,800 | 47,000 | 79,000 | 72,000 |  | $\begin{aligned} & 60,000 \\ & 70,000 \end{aligned}$ |
| 45-49... |  | 75,000 | $\begin{aligned} & 75,000 \\ & 80,000 \end{aligned}$ | $\begin{aligned} & 68,000 \\ & 75,000 \end{aligned}$ | $90,000$ | 80,000 | 51,000 | 86,000 | 70,000 | $\begin{aligned} & 65,000 \\ & 70,000 \end{aligned}$ |  |
| 50-54... | 74,000 | 80,000 |  |  |  | 81,500 | 57,000 | 90,000 | 80,000 | 70,000 | 75,100 |
| 55-59... | $\begin{aligned} & 75,000 \\ & 75,000 \\ & 71,000 \end{aligned}$ | 85,000 <br> 84,000 <br> 83,000 | $\begin{aligned} & 84,000 \\ & 87,000 \\ & 83,000 \end{aligned}$ | $\begin{aligned} & 84,000 \\ & 80,000 \\ & 82,000 \end{aligned}$ | 93,000 80,000 <br> 85,000 | $\begin{array}{r} 85,000 \\ 92,000 \\ \mathrm{~S} \end{array}$ | $\begin{aligned} & 60,000 \\ & 64,000 \\ & 63,600 \end{aligned}$ | $\begin{aligned} & 90,000 \\ & 85,000 \\ & 78,000 \end{aligned}$ | $\begin{aligned} & 75,500 \\ & 75,000 \\ & 76,400 \end{aligned}$ | 80,000 80,000 <br> 60,000 | $\begin{aligned} & 72,000 \\ & 72,000 \\ & 60,000 \end{aligned}$ |
| 60-64... |  |  |  |  |  |  |  |  |  |  |  |
| 65-75... |  |  |  |  |  |  |  |  |  |  |  |
| Citizenship status: |  |  |  |  |  |  |  |  |  |  |  |
| U.S. total | $67,000$ | $70,000$ | 71,000 | 60,000 | 80,000 | 75,000 | 52,000 | 83,000 | 73,000 | 65,000 | 66,000 |
| U.S. native.. |  |  | 70,000 | 60,000 | 80,000 | 76,500 | 52,000 | 81,600 | 72,000 | 65,000 | 66,100 |
| U.S. naturalized......................... | $\begin{aligned} & 65,000 \\ & 72,000 \end{aligned}$ | 73,000 | $\begin{aligned} & 75,000 \\ & 58,300 \end{aligned}$ | 65,000 | 77,500 | 75,000 | 60,000 | 90,000 |  | 70,000 | 65,000 |
| Non-U.S. total........................... | $\begin{aligned} & 55,000 \\ & 57,200 \end{aligned}$ | 55,000 |  | 38,000 | 67,000 | 65,000 | 46,000 | 76,000 | 65,000 | 55,000 | $60,000$ |
| Non-U.S., permanent resident..... |  | $\begin{aligned} & 57,000 \\ & 45,000 \end{aligned}$ | $\begin{aligned} & 60,000 \\ & 48,000 \end{aligned}$ | $\begin{aligned} & 41,000 \\ & 31,200 \end{aligned}$ | $\begin{aligned} & 68,000 \\ & 65,000 \end{aligned}$ | $\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$ | 48,50041,000 | 80,00051,000 | 67,00060,000 | 60,00040,000 | $\begin{aligned} & 60,000 \\ & 70,000 \end{aligned}$ |
| Non-U.S., temporary resident...... | 46,000 |  |  |  |  |  |  |  |  |  |  |


| Characteristics | Total | Research and development |  |  |  |  | Teaching | Management, sales, and administration | Computer applications | Professional services | Page 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  | Total | Applied research | Basic research | Development | Design |  |  |  |  | Other activities |
| Employer location: |  |  |  |  |  |  |  |  |  |  |  |  |
| New England.... | \$65,000 | \$66,000 | \$72,000 | \$46,000 | \$82,000 | \$75,000 | \$56,000 | \$81,600 | \$74,000 | \$60,000 | \$64,000 |
| Middle Atantic. | 70,000 | 72,000 | 73,000 | 62,000 | 80,000 | 75,000 | 53,000 | 90,000 | 75,000 | 70,000 | 69,000 |
| East North Central. | 63,000 | 67,500 | 70,000 | 60,000 | 72,000 | 72,000 | 51,000 | 80,000 | 60,000 | 60,000 | 67,000 |
| West North Central. | 57,000 | 60,000 | 61,000 | 52,000 | 70.200 | 60,000 | 48,000 | 75,000 | 57,300 | 60,000 | 60,000 |
| South Atlantic..... | 67,000 | 70,000 | 70,000 | 60,000 | 72,100 | 75,000 | 51,600 | 85,000 | 66,600 | 65,000 | 72,000 |
| East South Central... | 58,600 | 61,000 | 62,000 | 55,000 | 67,000 | 65,000 | 48,900 | 78,000 | 57,400 | 63,000 | 62,000 |
| West South Central. | 61,000 | 65,000 | 70,000 | 55.100 | 70,000 | 75,000 | 50,000 | 78,000 | 69,300 | 65,000 | 64,700 |
| Mountain. | 65,000 | 66,000 | 68,000 | 55,000 | 75,000 | 75,000 | 51,000 | 80,000 | 74,300 | 60,000 | 58,000 |
| Pacific. | 70,000 | 70,000 | 71,400 | 56,400 | 85,000 | 80,000 | 57,000 | 85,000 | 76,000 | 70,000 | 65,000 |
| U.S. teritories and other areas..... | 50,000 | 50,000 | 45,000 | 50,000 | s | s | 45,000 | 70,000 | s | s | s |
| Place of birth: |  |  |  |  |  |  |  |  |  |  |  |
| U.S.... | 65,000 | 70,000 | 70,000 | 60,000 | 80,000 | 76,500 | 52,000 | 81,800 | 72,000 | 65,000 | 67,000 |
| Europe.. | 65,000 | 65,000 | 67,500 | 55,000 | 71,000 | 68,500 | 55,000 | 86,000 | 80,000 | 67,000 | 61,000 |
| Asia. | 65,000 | 65.000 | 65,000 | 43,000 | 71,000 | 71,000 | 53,000 | 84,500 | 70,000 | 63,000 | 62,000 |
| North America... | 65,000 | 67,000 | 72,000 | 52,000 | s | s | 50,000 | 101,000 | s | 63.000 | s |
| Central America. | 56,000 | 56,000 | 50,000 | 57,000 | s | s | 55,000 | s | s | s | s |
| Caribbean..... | 67,000 | 62,000 | 69,000 | s | s | s | 50,000 | 80,000 | s | 79,300 | s |
| South America. | 59,000 | 60,000 | 68,000 | 52,400 | s | s | 45,000 | 75,000 | s | 60,000 | S |
| Africa... | 62,000 | 73,000 | 78,000 | 55,000 | 75,000 | s | 48,000 | 84,000 | 63,000 | 66,000 | 61,000 |
| Oceania.............................. | 75,000 | 75,000 | s | s | S | s | s | s | s | s | s |

[^30]| Characteristics | Total | Sciences | Computer and information sciences | Mathematical sciences | Biological and agricultural sciences | Health <br> sciences | Physical and <br> related sciences | Social and related sciences | Psychology | Engineering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$62,000 | \$72,000 | \$63,000 | \$60,000 | \$60,000 | \$70,000 | \$58,000 | \$60,000 | \$75,000 |
| Sex: |  |  |  |  |  |  |  |  |  |  |
| Men.. | 70,000 | 66,000 | 75,000 | 65,000 | 63,000 | 71,000 | 72,000 | 60,100 | 64,000 | 76,000 |
| Women.. | 53,000 | 52,000 | 61,000 | 52,000 | 50,000 | 55,000 | 59,000 | 51,300 | 52,000 | 63,000 |
| Race/ethnicity: |  |  |  |  |  |  |  |  |  |  |
| White. | 65,500 | 63,500 | 72,000 | 65,000 | 60,800 | 60,000 | 72,000 | 59,400 | 60,000 | 78,000. |
| Black. | 59,000 | 57,000 | S | 63,000 | 54,000 | 58,000 | 67,000 | 55,000 | 55,000 | 68,600 |
| Asian or Pacific Islander. | 65,000 | 57,600 | 72,000 | 55,000 | 47,000 | 70,000 | 65,000 | 54,000 | 50,000 | 72,000 |
| Hispanic.. | 59,500 | 56,000 | S | 54,000 | 54,000 | 62,000 | 60,000 | 54,000 | 50,000 | 70,000 |
| American Indian/Alaskan Native ... | 56,000 | 54,000 | S | S | 60,000 | S | 78,000 | 48,000 | 52,000 | S |
| Age: |  |  |  |  |  |  |  |  |  |  |
| Under 35. | 47,000 | 40,500 | 69,000 | 42,000 | 32,000 | 48,000 | 48,000 | 41,200 | 40,000 | 63,000 |
| 35-39.. | 57,000 | 53,000 | 76,000 | 50,000 | 50,000 | 53,000 | 60,000 | 48,000 | 50,000 | 69,000 |
| 40-44. | 63,000 | 60,000 | 71,000 | 52,000 | 60,000 | 58,000 | 72,000 | 52,000 | 60,000 | 75,000 |
| 45-49.. | 70,000 | 67,800 | 76,800 | 68,000 | 65,900 | 67,000 | 78,000 | 60,000 | 65,000 | 84,000 |
| 50-54.. | 74,000 | 70,000 | 75,000 | 73,000 | 71,000 | 64,000 ${ }^{\circ}$ | 82,000 | 65,000 | 65,000 | 88,000 |
| 55-59. | 75,000 | 73,000 | S | 74,000 | 72,000 | 66,000 | 80,000 | 66,000 | 68,600 | 94,000 |
| 60-64. | 75,000 | 70,300 | S | 65,000 | 70,000 | 65,000 | 80,000 | 70,100 | 60,000 | 87,000 |
| 65-75. | 71,000 | 70,000 | S | 81,000 | 72,000 | 72,000 | 71,000 | 70,000 | 63,000 | 78,200 |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates... | 42,000 | 38,000 | 63,000 | 40,000 | 30,000 | 48,000 | 42,000 | 40,000 | 39,000 | 60,000 |
| 1993-94 graduates... | 48,000 | 43,000 | 68,000 | 40,000 | 35,000 | 50,000 | 50,000 | 41,000 | 45,000 | 63,000 |
| 1990-92 graduates... | 55,000 | 50,000 | 76,800 | 45,000 | 48,500 | 55,000 | 56,000 | 48,000 | 50,000 | 69,000 |
| 1985-89 graduates. | 62,000 | 59,100 | 78,000 | 53,500 | 58,000 | 62,000 | 65,000 | 52,000 | 59,000 | 75,000 |
| 1980-84 graduates...... | 70,000 | 68,000 | 90,000 | 60,000 | 65,000 | 75,000 | 75,600 | 60,000 | 65,000 | 81,000 |
| 1970-79 graduates. | 76,000 | 75,000 | 84,000 | 75,000 | 73,000 | 76,000 | 81,000 | 70,000 | 69,000 | 90,000 |
| 1960-69 graduates......... | 80,000 | 79,300 | S | 72,800 | 80,000 | 95,000 | 80,000 | 77,000 | 70,000 | 93,000 |
| Pre-1960 graduates.. | 79,600 | 76,000 | S | 130,000 | 78,000 | S | 76,000 | 75,000 | 70,000 | 85,000 |
| Citizenship status: |  |  |  |  |  |  |  |  |  |  |
| U.S. total. | 67,000 | 64,000 | 75,000 | 65,000 | 61,000 | 61,000 | 72,000 | 59,000 | 60,000 | 80,000 |
| U.S. native. | 65,000 | 63,000 | 72,000 | 66,000 | 60,000 | 60,000 | 72,000 | 58,000 | 60,000 | 79,500 |
| U.S. naturalized. | 72,000 | 69,000 | 80,000 | 63,000 | 66,000 | 77,000 | 73,000 | 64,000 | 55,000 | 80,000 |
| Non-U.S. total., | 55,000 | 49,000 | 70,000 | 45,000 | 35,000 | 58,000 | 55,000 | 50,000 | 50,000 | 65,000 |
| Non-U.S., permanent resident..... | 57,200 | 51,000 | 70,000 | 45,000 | 38,000 | 58,000 | 56,200 | 53,000 | 52,000 | 65,000 |
| Non-U.S., temporary resident...... | 46,000 | 37,000 | 66,000 | 43,000 | 30,000 | 52,000 | 35,800 | 45,000 | S | 59,700 |

[^31]Table 52. Median annual salaries of doctoral scientists and engineers, by demographic characteristics and broad field of doctorate 1997


NOTE: $\quad$ Numbers are rounded to nearest hundred. Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

## 111



[^32]Table 53. Median annual salafies of doctoral scientists and engineers, by demographic characteristics
and broad occupation 1997

| Characteristics | Total | Scientists | Computer and information scientists | Mathematical scientists | Life and related scientists | Physical and <br> related scientists | Social and <br> related <br> scientists | Psychologists | Engineers | Non-S\&E occupations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Place of birth: |  |  |  |  |  |  |  |  |  |  |
| U.S. | \$65,000 | \$60,000 | \$72,000 | \$60,000 | \$59,000 | \$67,500 | \$55,000 | \$56,800 | \$75,000 | \$78,000 |
| Europe. | 65,000 | 60,000 | 75,000 | 58,800 | 54,000 | 63,000 | 59,000 | 55,000 | 69,000 | 83,500 |
| Asia. | 65,000 | 57,000 | 70,000 | 49,000 | 45,000 | 60,000 | 54,000 | 50,000 | 70,000 | 78,400 |
| North America. | 65,000 | 60,000 | 93,000 | S | 55,000 | 64,000 | 57,000 | 50,000 | 72,800 | 90,000 |
| Central America. | 56,000 | 55,000 | S | S | 44,500 | 57,000 | S | S | 60,000 | 75,000 |
| Caribbean. | 67,000 | 62,000 | S | S | 52,000 | 62,500 | S | 50,000 | 67,000 | 80,000 |
| South America... | 59,000 | 54,000 | S | S | 53,000 | 56,000 | 59,000 | 49,600 | 70,000 | 70,000 |
| Africa. | 62,000 | 56,000 | 70,000 | 65,000 | 45,000 | 61,000 | 45,800 | S | 73,000 | 65,000 |
| Oceania... | 75,000 | 70,000 | S | S | S | S | S | S | S | 107,000 |

NOTE: $\quad \begin{aligned} & \text { Numbers are rounded to nearest hundred. } \\ & \text { Median salaries were computed for full-time employed individuals only. } \\ & \\ & \text { 'Other' race included with 'white'. }\end{aligned}$
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 54. Median annual salaries of doctoral scientists and engineers, by employment-related characteristics, racelethnicity, and sex: 1997

| Characteristics |  |  |  |  |  |  | Page 1 of 2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total |  |  | White |  |  | Black |  |  |
|  | Total | Male | Female | Total | Male | Female | Total | Male | Female |
| Total... | \$65,000 | \$70,000 | \$53,000 | \$65,500 | \$70,000 | \$53,000 | \$59,000 | \$62,000 | \$52,000 |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates............................. | 42,000 | 46,000 | 38,000 | 40,800 | 45,000 | 38,000 | 40,900 | 40,000 | 41,900 |
| 1993-94 graduates. | 48,000 | 50,000 | 42,000 | 45,800 | 49,900 | 41,000 | 49,000 | 50,000 | 44,000 |
| 1990-92 graduates. | 55,000 | 57,500 | 50,000 | 54,000 | 57,000 | 49,000 | 53,000 | 54,000 | 52,000 |
| 1985-89 graduates.............................. | 62,000 | 65,000 | 55,000 | 60,000 | 64,900 | 55,000 | 56,000 | 60,000 | 45,000 |
| 1980-84 graduates.. | 70,000 | 72,000 | 61,500 | 70,000 | 72,000 | 60,000 | 69,000 | 69,000 | 69,000 |
| 1970-79 graduates. | 76,000 | 79,000 | 65,000 | 76,000 | 79,000 | 65,000 | 71,000 | 73,000 | 69,000 |
| 1960-69 graduates. | 80,000 | 80,700 | 63,000 | 80,000 | 81,000 | 62,000 | 72,000 | 72,000 | S |
| Pre-1960 graduates... | 79,600 | 80,000 | 70,000 | 79,000 | 80,000 | 65,000 | S | S | S |
| Sector of employment: |  |  |  |  |  |  |  |  |  |
| Universities and 4-year colleges............. | 55,000 | 60,000 | 46,100 | 57,000 | 60,000 | 48,000 | 50,000 | 54,700 | 45,000 |
| Other educational institutions.......... | 48,000 | 48,600 | 46,000 | 47,700 | 48,000 | 46,000 | 57,000 | 57,500 | 56,000 |
| Private-for-profit. | 80,000 | 80,000 | 70,000 | 80,000 | 83,500 | 70,000 | 75,000 | 75,400 | 72,000 |
| Selfemployed.......... | 75,000 | 80,000 | 65,000 | 75,000 | 80,000 | 65,000 | 90,000 | S | S |
| Private not-for-profit. | 65,000 | 70,000 | 53,000 | 65,000 | 70,000 | 54,100 | 60,000 | 62,000 | 60,000 |
| Federal government.. | 71,000 | 72,600 | 64,000 | 71,000 | 73,000 | 64,000 | 70,000 | 71,000 | 70,000 |
| State and local government. | 54,000 | 54,000 | 52,400 | 54,000 | 55,000 | 52,000 | 55,000 | 61,000 | 52,400 |
| Other sector. | 90,000 | 90,000 | 95,000 | 90,000 | 90,000 | 63,000 | S | S | S |
| Primary work activity: |  |  |  |  |  |  |  |  |  |
| R\&D. | 68,000 | 70,000 | 55,000 | 70,000 | 72,000 | 56,000 | 62,500 | 65,000 | 54,000 |
| Applied research................................ | 70,000 | 72,000 | 60,000 | 70,000 | 74,000 | 60,000 | 65,000 | 69,000 | 56,600 |
| Basic research... | 57,000 | 60,000 | 43,000 | 60,000 | 64,000 | 45,400 | 50,000 | 53,000 | 43,000 |
| Development................................... | 75,000 | 77,500 | 68,000 | 80,000 | 80,000 | 67,700 | 70,000 | 73,500 | S |
| Design............................................ | 75,000 | 75,000 | 65,000 | 75,000 | 76,500 | 66,000 | s | S | S |
| Teaching......................................... | 52,000 | 55,000 | 45,000 | 52,000 | 55,000 | 45,000 | 50,000 | 50,000 | 44,000 |
| Management, sales, and administration... | 82,000 | 86,000 | 65,000 | 84,000 | 87,400 | 65,000 | 72,000 | 80,000 | 62,000 |
| Computer applications......................... | 70,000 | 71,000 | 60,000 | 72,000 | 72,000 | 60,000 | 63,000 | 63,000 | S |
| Professional services.......................... | 65,000 | 72,000 | 55,000 | 65,000 | 72,000 | 55,000 | 62,000 | 66,000 | 56,000 |
| Other activities................................... | 65,000 | 70,000 | 58,000 | 67,000 | 70,000. | 58,000 | 65,000 | 67,000 | 57,000 |

See explanatory information and SOURCE at end of table.


NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
'Other race included with 'white'.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 55. Median annual salaries of doctoral scientists and engineers, by employment-related characteristics and citizenship status: 1997

| Characteristics | Total | U.S. Citizen |  |  | Non-U.S. Citizen |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Native | Naturalized | Total | Permanent resident | Temporary <br> resident |
| Total............................................................. | \$65,000 | \$67,000 | \$65,000 | \$72,000 | \$55,000 | \$57,200 | \$46,000 |
| Year of doctorate: |  |  |  |  |  |  |  |
| 1995-96 graduates.... | 42,000 | 41,000 | 40,400 | 45,000 | 45,000 | 46,500 | 45,000 |
| 1993-94 graduates... | 48,000 | 46,000 | 45,000 | 53,000 | 53,000 | 54,700 | 45,000 |
| 1990-92 graduates.... | 55,000 | 54,000 | 53,000 | 60,000 | 57,000 | 57,200 | 50,000 |
| 1985-89 graduates. | 62,000 | 62,000 | 60,000 | 70,000 | 60,000 | 60,600 | 45,000 |
| 1980-84 graduates....... | 70,000 | 70,000 | 70,000 | 75,000 | 72,000 | 72,000 | S |
| 1970-79 graduates... | 76,000 | 76,000 | 75,000 | 80,000 | 77,000 | 75,000 |  |
| 1960-69 graduates...... | $\begin{aligned} & 80,000 \\ & 79,600 \end{aligned}$ | 80,000 | 80,000 | 80,000 | 80,000 | 80,000 | S |
| Pre-1960 graduates.... |  | 80,000 | 79,000 | 80,000 | S | S | S |
| Sector of employment: |  |  |  |  |  |  |  |
| Universities and 4-year colleges............. | 55,000 | 57,000 | 56,000 | 63,000 | 43,000 | 45,000 | 34,000 |
| Other educational institutions...... | 48,000 | 48,000 | 48,000 | 43,000 | 45,000 | 48,000 | S |
| Private-for-profit. | 80,000 | 80,000 | 80,000 | 80,000 | 67,000 | 68,000 | 63,000 |
| Self-mployed..................... | 75,000 | 75,000 | 75,000 | 70,000 | 70,000 | 70,000 | S |
| Private not-for-profit.... | 65,000 | 66,000 | 65,000 | 75,000 | 49,000 | 49,000 | 43,000 |
| Federal govemment.. | 71,000 | 72,000 | 71,000 | 73,200 | 48,000 | 50,000 | 46,000 |
| State and local govemment................. | $\begin{aligned} & 54,000 \\ & 90,000 \end{aligned}$ | $\begin{aligned} & 54,000 \\ & 80,000 \end{aligned}$ | $\begin{aligned} & 54,000 \\ & 80,000 \end{aligned}$ | $\begin{aligned} & 53,000 \\ & 75,000 \end{aligned}$ | $\begin{array}{r} 47,000 \\ 100,000 \end{array}$ | $\begin{aligned} & 48,000 \\ & 90,000 \end{aligned}$ | S |
| Other sector... |  |  |  |  |  |  |  |
| Primary work activity: |  |  |  |  |  |  |  |
| R\&D................. | 68,000 | 70,000 | 70,000 | 73,000 | 55,000 | 57,000 | 45,000 |
| Applied research.................... | 70,000 | 71,000 | 70,000 | 75,000 | 58,300 | 60,000 | 48,000 |
| Basic research. | 57,000 | 60,000 | 60,000 | 65,000 | 38,000 | 41,000 | 31,200 |
| Development....................................... | $\begin{aligned} & 75,000 \\ & 75,000 \end{aligned}$ | 80,000 | 80,000 | 77,500 | 67,000 | 68,000 | 65,000 |
| Design.... |  | 75,000 | 76,500 | 75,000 | 65,000 | 65,000 | 65,000 |
| Teaching............... | 52,000 | 52,000 | 52,000 | 60,000 | 46,000 | 48,500 | 41,000 |
| Management, sales, and administration... | 82,000 | 83,000 | 81,600 | 90,000 | 76,000 | 80,000 | 51,000 |
| Computer applications......................... | 70,000 | 73,000 | 72,000 | 76,000 | 65,000 | 67,000 | 60,000 |
| Professional services........................... | $\begin{aligned} & 65,000 \\ & 65,000 \end{aligned}$ | 65,00066,000 | $\begin{aligned} & 65,000 \\ & 66,100 \end{aligned}$ | $\begin{aligned} & 70,000 \\ & 65,000 \end{aligned}$ | 55,000 | 60,000 | 40,00070,000 |
| Other activities.. |  |  |  |  | 60,000 | 60,000 |  |

NOTE: $\quad$ Numbers are rounded to nearest hundred
Median salaries were computed for full-time employed individuals only.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 56. Median annual salaries of doctoral scientists and engineers, by employment-related characteristics and sector of employment: 1997

| Characteristics | Total | Universities and 4-year colleges | Other educational institutions | Private-forprofit | Self- <br> employed | Private <br> not-for- <br> profit | Federal government | State and local government | Other sector |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$55,000 | \$48,000 | \$80,000 | \$75,000 | \$65,000 | \$71,000 | \$54,000 | \$90,000 |
| Year of doctorate: |  |  |  |  |  |  |  |  |  |
| 1995-96 graduates. | 42,000 | 34,000 | 40,000 | 61,000 | 48,000 | 41,000 | 50,000 | 39,000 | S |
| 1993-94 graduates. | 48,000 | 39,200 | 40,000 | 65,000 | 70,000 | 46,700 | 50,300 | 43,000 | S |
| 1990-92 graduates. | 55,000 | 45,000 | 45,000 | 70,000 | 60,000 | 57,000 | 59,000 | 52,000 | S |
| 1985-89 graduates. | 62,000 | 52,500 | 46,000 | 79,000 | 78,000 | 63,000 | 65,000 | 53,700 | 80,000 |
| 1980-84 graduates. | 70,000 | 59,000 | 49,000 | 85,000 | 85,000 | 70,000 | 72,000 | 55,800 | 100,000 |
| 1970-79 graduates. | 76,000 | 68,000 | 52,000 | 92,000 | 75,000 | 80,000 | 82,100 | 60,000 | 125,200 |
| 1960-69 graduates. | 80,000 | 75,000 | 52,000 | 96,000 | 91,000 | 79,900 | 90,000 | 65,000 | S |
| Pre-1960 graduates.. | 79,600 | 83,000 | S | 83,000 | 30,000 | 50,000 | 96,000 | S | S |
| Primary work activity: |  |  |  |  |  |  |  |  |  |
| R\&D. | 68,000 | 56,000 | 54,000 | 76,000 | 70,000 | 70,000 | 70,000 | 50,000 | 80,000 |
| Applied research. | 70,000 | 59,700 | 54,000 | 76,000 | 60,000 | 70,000 | 70,000 | 50,000 | 80,000 |
| Basic research. | 57,000 | 55,000 | S | 75,000 | 80,000 | 55,000 | 65,000 | 48,000 | S |
| Development........................................ | 75,000 | 63,000 | S | 78,000 | 80,000 | 80,000 | 68,000 | 55,000 | S |
| Design. | 75,000 | 55,000 | S | 75,000 | 90,000 | 75,000 | 71,000 | 52,000 | S |
| Teaching. | 52,000 | 52,000 | 42,000 | 62,000 | S | 60,000 | S | S | S |
| Management, sales, and administration.... | 82,000 | 75,000 | 69,000 | 92,000 | 70,000 | 70,000 | 85,000 | 58,000 | 100,000 |
| Computer applications............................ | 70,000 | 50,000 | S | 75,000 | 52,000 | 65,000 | 72,600 | 51,300 | S |
| Professional services. | 65,000 | 54,000 | 55,000 | 80,000 | 80,000 | 53,000 | 63,000 | 53,700 | S |
| Other activities..................................... | 65,000 | 60,000 | 60,000 | 72,000 | 30,000 | 65,000 | 72,900 | 53,800 | 100,000 |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 57. Median annual salaries of doctoral scientists and engineers, by field of doctorate and year of doctorate: 1997

| Field of doctorate | Total | - 1995-96 graduates | $\begin{array}{r} 1993-94 \\ \text { graduates } \end{array}$ | $1990-92$ graduates | 1985-89 graduates | 1980-84 <br> graduates | $\begin{array}{r} 1970-79 \\ \text { graduates } \end{array}$ | $\begin{array}{r} 1960-69 \\ \text { graduates } \end{array}$ | Pre-1960 graduates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total. | \$65,000 | \$42,000 | \$48,000 | \$55,000 | \$62,000 | \$70,000 | \$76,000 | \$80,000 | \$79,600 |
| Sciences.. | 62,000 | 38,000 | 43,000 | 50,000 | 59,100 | 68,000 | 75,000 | 79,300 | 76,000 |
| Computer and mathematical sciences... | 65,000 | 50,000 | 57,000 | 57,000 | 63,000 | 65,000 | 75,000 | 72,800 | 130,000 |
| Computerfinformation sciences. | 72,000 | 63,000 | 68,000 | 76,800 | 78,000 | 90,000 | 84,000 | S | S |
| Mathematical sciences.... | 63,000 | 40,000 | 40,000 | 45,000 | 53,500 | 60,000 | 75,000 | 72,800 | 130,000 |
| Biological and agricultural sciences......... | 60,000 | 30,000 | 35,000 | 48,500 | 58,000 | 65,000 | 73,000 | 80,000 | 78,000 |
| Agricultural/ food sciences. | 60,000 | 38,800 | 40,000 | 52,000 | 58,000 | 64,000 | 68,800 | 81,800 | 75,000 |
| Biological sciences.. | 60,000 | 29,000 | 34,000 | 48,000 | 59,000 | 66,000 | 75,000 | 80,000 | 80,000 |
| Environmental life sciences... | 60,000 | 39,700 | S | 50,000 | 52,500 | 67,000 | 70,000 | 72,000 | S |
| Health sciences... | 60,000 | 48,000 | 50,000 | 55,000 | 62,000 | 75,000 | 76,000 | 95,000 | S |
| Physical and related sciences................ | 70,000 | 42,000 | 50,000 | 56,000 | 65,000 | 75,600 | 81,000 | 80,000 | 76,000 |
| Chemistry except biochemistry. | 70,500 | 40,000 | 56,000 | 60,000 | 69,000 | 77,000 | 81,000 | 79,000 | 75,000 |
| Earth/atmos/ocean sciences... | 60,000 | 40,000 | 42,000 | 48,000 | 55,000 | 70,000 | 76,000 | 82,000 | S |
| Physics and astronomy. | 73,000 | 44,000 | 48,000 | 55,000 | 65,000 | 77,000 | 84,000 | 84,000 | 79,600 |
| Social sciences.... | 58,000 | 40,000 | 41,000 | 48,000 | 52,000 | 60,000 | 70,000 | 77,000 | 75,000 |
| Economics. | 69,000 | 52,000 | 54,000 | 52,500 | 60,000 | 70,000 | 76,000 | 82,000 | S |
| Political and related sciences. | 58,000 | 38,500 | 40,000 | 44,000 | 50,000 | 58,000 | 72,000 | 77,300 | S |
| Sociology... | 53,300 | 36,900 | 36,000 | 41,900 | 47,000 | 56,000 | 63,000 | 74,000 | S |
| Other social sciences... | 52,000 | 38,500 | 38,000 | 44,000 | 50,000 | 56,500 | 65,000 | 68,000 | S |
| Psychology....................................... | 60,000 | 39,000 | 45,000 | 50,000 | 59,000 | 65,000 | 69,000 | 70,000 | 70,000 |
| Engineering..................................... | 75,000 | 60,000 | 63,000 | 69,000 | 75,000 | 81,000 | 90,000 | 93,000 | 85,000 |
| Aerospace/aeronautical engineering..... | 75,000 | 58,000 | 56,000 | 60,000 | 71,000 | 100,000 | 91,500 | 80,000 | S |
| Chemical engineering.................. | 79,000 | 60,000 | 65,000 | 72,000 | 77,000 | 84,000 | 93,900 | 95,000 | S |
| Civilarchitectural engineering. | 69,000 | 48,000 | 52,000 | 60,000 | 70,000 | 72,000 | 86,000 | 78,200 | S |
| Electricalcomputer engineering.... | 80,000 | 68,000 | 70,000 | 75,000 | 83,000 | 85,000 | 90,000 | 100,000 | 84,000 |
| Materials/metallurgical engineering....... | 75,000 | 57,000 | 62,000 | 67,500 | 75,000 | 85,000 | 93,000 | 99,000 | S |
| Mechanical engineering.................... | 73,000 | 59,000 | 60,000 | 69,000 | 70,000 | 80,000 | 84,000 | 92,000 | S |
| Other engineering............................. | 75,000 | 56,000 | 60,000 | 63,000 | 71,500 | 80,000 | 90,000 | 82,000 | S |

NOTE: $\quad$ Numbers are rounded to nearest hundred.
Median salaries were computed for full-ime employed individuals only.
KEY: $\quad \mathrm{S}=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

Table 58. Median annúal salaries of doctoral scientists and engineers, by geographic location and broad field of doctorate: 1997

| Geographic location | Total | Sciences | Computer and information sciences | Mathematical sciences | Biological and agricultural sciences | Health <br> sciences | Physical and <br> related <br> sciences | Social and related sciences | Psychology | Engineering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total.. | \$65,000 | \$62,000 | \$72,000 | \$63,000 | \$60,000 | \$60,000 | \$70,000 | \$58,000 | \$60,000 | \$75,000 |
| New England.. | 65,000 | 62,000 | 90,000 | 70,000 | 56,000 | 63,000 | 70,000 | 60,000 | 60,000 | 73,000 |
| Connecticut... | 74,000 | 74,000 | S | 76,500 | 71,200 | 70,000 | 78,000 | 74,000 | 65,100 | 75,000 |
| Maine. | 55,000 | 55,000 | S | S | 50,000 | S | 60,000 | 55,000 | 60,000 | 53,000 |
| Massachusetts.. | 66,000 | 63,000 | 90,000 | 76,800 | 52,000 | 70,000 | 70,000 | 62,000 | 58,000 | 76,000 |
| New Hampshire.. | 58,000 | 54,000 | S | S | S | S | 70,000 | 50,000 | 46,700 | 70,000 |
| Rhode Island..........: | 58,000 | 51,000 | S | S | 60,000 | S | 56,000 | 50,000 | 50,000 | 66,500 |
| Vermont.... | 55,000 | 50,000 | S | S | 48,000 | S | 65,000 | 46,000 | 55,000 | S |
| Middle Atlantic. | 70,000 | 67,000 | 80,000 | 70,000 | 65,000 | 64,000 | 75,000 | 60,000 | 65,000 | 80,000 |
| New Jersey...... | 78,000 | 75,000 | 85,000 | 87,000 | 75,000 | 71,000 | 78,000 | 61,000 | 66,000 | 85,000 |
| New York. | 67,500 | 65,000 | 74,500 | 65,000 | 60,000 | 62,000 | 74,000 | 61,000 | 65,000 | 78,000 |
| Pennsylvania.... | 65,000 | 63,000 | S | 59,500 | 62,500 | 60,000 | 70,000 | 58,100 | 63,000 | 75,000 |
| East North Central... | 63,000 | 60,000 | 65,000 | 60,000 | 60,000 | 61,000 | 68,000 | 56,500 | 56,700 | 71,000 |
| Illinois..... | 65,000 | 65,000 | 72,000 | 64,000 | 64,000 | 55,000 | 69,000 | 65,000 | 59,000 | 72,000 |
| Indiana... | 60,000 | 56,000 | S | 46,700 | 60,000 | 55,000 | 70,000 | 49,900 | 60,000 | 69,000 |
| Michigan. | 68,000 | 62,500 | S | 58,600 | 62,000 | 83,000 | 70,300 | 59,800 | 60,000 | 75,000 |
| Ohio.. | 62,000 | 60,000 | S | 60,000 | 60,000 | 60,500 | 66,500 | 51,300 | 57,000 | 70,000 |
| Wisconsin... | 56,700 | 54,900 | S | 54,000 | 54,000 | 50,000 | 60,000 | 57,300 | 50,000 | 70,000 |
| West North Central. | 57,000 | 55,000 | 65,000 | 50,000 | 58,000 | 55,000 | 62,000 | 50,000 | 52,000 | 67,700 |
| lowa.. | 55,000 | 55,000 | S | 53,000 | 59,000 | S | 52,000 | 51,000 | 50,000 | 55,000 |
| Kansas.... | 52,000 | 50,000 | S | 36,000 | 50,000 | S | 62,000 | 41,000 | 60,000 | 64,000 |
| Minnesota.. | 61,000 | 58,000 | S | 65,000 | 58,000 | 70,000 | 68,800 | 50,000 | 51,000 | 70,000 |
| Missouni... | 57,300 | 55,000 | S | 50,800 | 61,000 | 50,000 | 60,000 | 53,200 | 50,000 | 80,000 |
| Nebraska. | 57,000 | 57,800 | S | S | 60,300 | S | 60,000 | 56,000 | 48,000 | 57,000 |
| North Dakota., | 48,000 | 48,000 | S | S | 55,000 | S | S | S | 70,000 | S |
| South Dakota.: | 45,000 | 45,000 | S | S | 60,100 | S | S | S | S | S |
| South Atlantic....... | 67,000 | 65,000 | 65,000 | 65,000 | 62,000 | 63,600 | 71,000 | 63,400 | 60,000 | 78,000 |
| Delaware. | 80,000 | 79,000 | S | S | 70,000 | S | 81,000 | 82,000 | S | 95,000 |
| District of Columbia.. | 81,000 | 80,000 | S | 80,000 | 69,000 | 80,000 | 84,000 | 84,000 | 75,000 | 84,000 |
| Florida. | 60,000 | 55,000 | S | 48,000 | 53,000 | 60,000 | 60,000 | 55,000 | 60,500 | 75,000 |
| Georgia.... | 60,000 | 58,000 | S | 62,000 | 65,700 | 55,000 | 58,000 | 47,500 | 64,000 | 80,000 |
| Maryland.. | 68,900 | 65,000 | 76,000 | 70,000 | 60,000 | 65,000 | 75,000 | 63,700 | 56,700 | 81,800 |
| North Carolina. | 64,000 | 62,000 | 67,000 | 59,000 | 65,000 | 60,000 | 62,000 | 57,000 | 57,200 | 73,000 |
| South Carolina.... | 56,000 | 55,000 | S | 59,000 | 58,000 | 57,000 | 60,000 | 50,000 | 52,500 | 70,200 |
| Virginia., | 70,000 | 66,000 | S | 72,000 | 60,000 | 57,500 | 72,500 | 58,000 | 64,000 | 82,000 |
| West Virginia.................. | 61,000 | 57,000 | S | S | 57,000 | S | 75,000 | 41,000 | S | 72,000 |

See explanatory information and SOURCE at end of table.

| Geographic location | Total | Sciences | Computer and information sciences | Mathematical sciences | Biological and agricultural sciences | Health sciences | Physical and <br> related sciences | Social and related sciences | Psychology | Engineering |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| East South Central. | \$58,600 | \$56,000 | S | \$49,900 | \$55,000 | \$60,000 | \$61,000 | \$55,000 | \$60,000 | \$70,000 |
| Alabama | 60,000 | 56,000 | S | 48,000 | 56,000 | 60,000 | 60,000 | 55,000 | 56,200 | 74,000 |
| Kentucky | 55,000 | 55,000 | S | 50,000 | 60,000 | S | 61,000 | 50,000 | 50,000 | 68,000 |
| Mississippi. | 57,000 | 53,000 | S | S | 55,000 | 62,000 | 50,000 | 50,000 | 60,000 | 75,300 |
| Tennessee. | 60,000 | 60,000 | S | 65,000 | 47,000 | 60,000 | 64,600 | 56,000 | 65,000 | 62,300 |
| West South | 61,000 | 59,000 | 70,000 | 55,000 | 56,000 | 56,000 | 70,000 | 52,000 | 55,000 | 72,500 |
| Arkansas. | 53,400 | 52,000 | S | S | 50,600 | S | 54,000 | 55,000 | 50,000 | 65,400 |
| Louisiana | 58,000 | 55,000 | S | S | 53,000 | S | 63,000 | 50,000 | 59,000 | 69,000 |
| Oklahoma. | 55,000 | 54,000 | S | S | 58,000 | S | 51,500 | 50,000 | 60,500 | 60,000 |
| Texas... | 65,000 | 60,000 | 75,000 | 55,000 | 58,000 | 60,000 | 70,000 | 55,000 | 55,000 | 75,000 |
| Mountain. | 65,000 | 60,000 | 68,000 | 60,000 | 57,000 | 55,000 | 70,000 | 52,000 | 54,000 | 75,000 |
| Arizona | 65,000 | 59,000 | S | 52,700 | 55,000 | S | 70,000 | 52,000 | 65,000 | 75,000 |
| Colorado. | 60,000 | 60,000 | S | 60,000 | 58,000 | 55,000. | 70,000 | 60,000 | 52,000 | 70,000 |
| Idaho... | 62,000 | 60,000 | S | S | 62,000 | S | 60,000 | 50,000 | S | 70,000 |
| Montan | 50,000 | 48,000 | S | S | 58,000 | S | 60,000 | S | 43,000 | S |
| Nevada. | 67,000 | 65,200 | S | S | 65,000 | S | 77,900 | 60,000 | 75,000 | 74,000 |
| New Mexico. | 72,000 | 70,000 | S | 62,000 | 55,300 | S | 75,800 | 50,000 | 50,000 | 80,000 |
| Utah. | 60,000 | 55,000 | S | 73,000 | 55,000 | S | 52,000 | 60,000 | 50,000 | 77,000 |
| Wyoming.............................. | 54,000 | 50,000 | $S$ | S | S | S | 60,000 | S | S | S |
| Pacific. | 70,000 | 65,000 | 80,000 | 75,000 | 60,000 | 61,000 | 72,600 | 62,000 | 61,500 | 80,000 |
| Alaska. | 62,000 | 59,000 | S | S | 53,000 | S | 89,000 | S | S | S |
| California | 72,000 | 70,000 | 85,000 | 80,000 | 65,000 | 65,000 | 75,000 | 64,000 | 63,000 | 83,000 |
| Hawail | 60,000 | 60,000 | S | S | 57,600 | S | 61,000 | 62,000 | 61,500 | 100,000 |
|  | 56,100 | 53,000 | 78,000 | 49,400 | 52,000 | 58,000 | 63,000 | 52,000 | 46,000 | 67,000 |
| Oregon....... | 62,000 | 60,000 | S | 55,600 | 57,900 | 53,000 | 65,000 | 60,000 | 60,000 | 70,000 |
| Washington........................... |  |  |  | S |  | S | 60,000 | 50,000 | 50,000 | 58,000 |
| U.S. teritories and other areas... | 50,000 | 50,000 | s |  |  |  |  |  |  |  |

NOTE: $\quad$ Numbers are rounded to nearest ten.
Details may not add to total because of rounding.
Since the SDR sample design does not include geography, the reliability of estimates in some states may be poor due to a small sample size.

KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

| Geographic location | Total | Scientists | Computer and information scientists | Mathematica scientists | Life and related scientists | Physical and <br> related scientists | Social and related scientists | Psychologists | Engineers | Page 1 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | Non-S\&E <br> occupations |
| Total... | \$65,000 | \$60,000 | \$72,000 | \$59,000 | \$57,000 | \$65,000 | \$55,000 | \$56,000 | \$72,600 | \$78,000 |
| New England... | 65,000 | 60,000 | 77,000 | 62,000 | 52,000 | 65,000 | 60,000 | 58,000 | 70,000 | 76,500 |
| Connecticut. | 74,000 | 70,000 | S | 74,000 | 67,000 | 75,000 | 70,000 | 66,000 | 72,000 | 80,000 |
| Maine. | 55,000 | 52,000 | S | S | 48,000 | 51,000 | 55,000 | 60,000 | S | ,000 |
| Massachusetts... | 66,000 | 62,000 | 78,000 | 63,000 | 51,000 | 65,000 | 60,000 | 55,000 | 72,000 | 83,000 |
| New Hampshire. | 58,000 | 50,000 | 85,000 | S | S | 46,000 | S | 45,000 | 70,000 | 65,000 |
| Rhode Island. | 58,000 | 53,000 | S | S | 52,000 | 58,000 | 50,000 | 50,000 | 65,000 | 55,000 |
| Vermont.. | 55,000 | 49,000 | S | S | 41,000 | S | 40,000 | 55,000 | 71,600 | .63,000 |
| Middle Atlantic. | 70,000 | 65,000 | 79,000 | 60,000 | 62,000 | 70,000 | 55,000 | 61,000 | 75,000 | 86,000 |
| New Jersey. | 78,000 | 73,700 | 80,000 | 75,000 | 70,000 | 75,000 | 64,000 | 62,000 | ,000 | 0 |
| New York. | 67,500 | 61,000 | 74,500 | 59,000 | 58,000 | 71,000 | 54,000 | ,000 |  |  |
| Pennsylvania. | 65,000 | 60,600 | 70,000 | 58,000 | 61,000 | 62,000 | 55,000 | 61,000 | 70,000 | 83,200 |
| East North Central.. | 63,000 | 57,000 | 66,000 | 57,000 | 57,000 | 62,500 | 54,000 | ,000 |  |  |
| Illinois. | 65,000 | 61,000 | 72,000 | 63,000 | 59,500 | 63,000 | 59,000 | 5,000 | 1,000 |  |
| Indiana... | 60,000 | 52,200 | S | 45,000 | 54,000 | 62,000. | 900 | 55,000 |  | 3,000 |
| Michigan. | 68,000 | 60,000 | 65,000 | 58,600 | 65,000 | 60,000 |  |  |  | 89,000 |
| Ohio. | 62,000 | 56,000 | 60,000 | 59,000 | 0 |  |  | 56,000 | 75,000 | 80,000 |
| Wisconsin. |  |  |  |  |  |  | 49,500 | 52,000 | 70,000 | 71,000 |
|  | 56,700 | 52,000 | S | 43,900 | 48,000 | 57,900 | 55,000 | 50,000 | 63,000 | 68,500 |
| West North Central.. | 57,000 | 53,000 | 58,000 | 46,000 | 55,000 | 55,000 | 48,000 | 50,000 | 66,000 | 70,000 |
| Iowa. | 55,000 | 53,000 | 50,000 | 48,000 | 55,000 | 55,000 | 48,000 | 54,000 | 55,000 | 75,000 |
| Kansas... | 52,000 | 50,800 | S | S | 50,000 | 55,000 | 41,000 | 60,000 | 64,000 | 50,000 |
| Minnesota. | 61,000 | 54,000 | 70,000 | 65,000 | 53,000 | 60,000 | 50,000 | 51,000 | 69,000 |  |
| Missouri. | 57,300 | 53,200 | 65,100 | 45,000 | 57,000 | 50,000 | 53,200 | 000 |  |  |
| Nebraska. | 57,000 | 56,000 | S | S | 60,000 | 64,000 | 55,000 | 200 |  | 75,000 |
| North Dakota. | 48,000 | 48,000 | S | S | 51,000 | S | S |  | 57,00 | 60,000 |
| South Dakota. | 45,000 | 45,000 | S | S | 60,100 | S |  |  | S | S |
|  |  |  |  |  |  |  | S | S | S | 49,000 |
| South Atlantic... | 67,000 | 61,000 | 66,600 | 62,000 | 60,000 | 68,000 | 57,200 | 55,000 | 75,000 | 82,000 |
| Delaware. | 80,000 | 75,000 | S | S | 70,000 | 81,000 | S | S | 84,900 |  |
| District of Columbia. | 81,000 | 75,000 | 65,000 | 77,500 | 69,000 | 80,000 | 80,000 | 62,000 |  |  |
| Florida. | 60,000 | 52,800 | 60,000 | 45,000 | 50,000 | 55,100 | 50,900 | 500 |  | 93,700 |
| Georgia. | 60,000 | 56,000 | 65,000 | 62,000 | 60,000 | 53,000 | 45800 |  |  | 70,000 |
| Maryland. | 68,900 | 62,000 | 70,000 | 65,000 | 57,000 | 75,000 |  |  | 78,00 | 75,000 |
| North Carolina. | 64,000 | 60,000 | 65,500 | 59,000 | 64,000 |  |  | 55,000 | 80,000 | 85,000 |
| South Carolina. | 56,000 | 54,000 | S |  |  |  | 52,500 | 54,000 | 70,000 | 75,000 |
| Virginia. | 70,000 |  |  |  | 51,000 | 59,000 | 50,000 | 52,500 | 70,000 | 70,000 |
| West Virginia | 61,000 |  | 72,00 | 75,000 | 59,000 | 68,000 | 54,000 | 57,000 | 78,000 | 87,000 |
|  |  | 54,200 | S | S | 54,000 | 64,000 | 41,000 | S | 72,000 | 84,000 |

Table 59. Median annual salaries of doctoral scientists and engineers, by geographic location and broad occupation: 1997

| Geographic location | Total | Scientists | Computer and information scientists | Mathematical scientists | Life and related scientists | Physical and <br> related scientists | Social and related scientists | Psychologists | Engineers | Non-S\&E <br> occupations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| East South Central. | \$58,600 | \$54,500 | \$57,000 | \$48,000 | \$53,000 | \$60,000 | \$54,500 | \$56,000 | \$65,000 | \$75,000 |
| Alabama. | 60,000 | 54,000 | 56,000 | 44,000 | 54,000 | 52,900 | 55,000 | 53,000 | 74,000 | 83,000 |
| Kentucky. | 55,000 | 53,000 | 65,000 | 48,000 | 54,000 | 61,000 | 48,000 | 50,000 | S | 58,000 |
| Mississippi | 57,000 | 53,000 | S | S | 53,000 | 51,000 | 45,000 | S | 80,000 | 68,100 |
| Tennessee. | 60,000 | 56,500 | S | 50,000 | 47,000 | 62,000 | 56,000 | 63,000 | 60,000 | 78,000 |
| West South Central. | 61,000 | 56,000 | 68,000 | 51,000 | 54,000 | 62,000 | 50,000 | 54,400 | 70,000 | 72,000 |
| Arkansas... | 53,400 | 50;000 | S | S | 49,000 | 50,000 | 54,500 | 50,000 | S | 75,000 |
| Louisiana. | 58,000 | 55,000 | 60,000 | 37,000 | 54,000 | 60,000 | 50,000 | 59,000 | 67,700 | 60,000 |
| Oklahoma. | 55,000 | 53,500 | S | S | 53,500 | 54,000 | 48,000 | 63,000 | 60,000 | 67,000 |
| Texas... | 65,000 | 60,000 | 69,400 | 54,000 | 56,000 | 70,000 | 52,000 | 50,000 | 73,000 | 74,000 |
| Mountain. | 65,000 | 58,200 | 70,000 | 57,000 | 54,000 | 70,000 | 50,000 | 50,000 | 72,000 | 75,000 |
| Arizona. | 65,000 | 58,000 | S | 51,000 | 47,300 | 70,000 | 47,000 | 67,000 | 75,400 | 60,900 |
| Colorado. | 60,000 | 58,000 | 67,000 | 58,900 | 54,000 | 60,000 | 57,000 | 50,000 | 65,000 | 84,000 |
| Idaho... | 62,000 | 55,000 | S | S | 55,000 | 60,000 | S | S | 70,000 | 75,000 |
| Montana. | 50,000 | 45,000 | S | S | 55,000 | S | S | 42,500 | S | 64,800 |
| Nevada. | 67,000 | 65,200 | S | S | 63,000 | 75,000 | S | 67,000 | 74,000 | 65,000 |
| New Mexico. | 72,000 | 70,000 | 69,500 | 60,000 | 53,900 | 75,000 | 41,500 | 45,000 | 72,000 | 80,000 |
| Utah. | 60,000 | 53,000 | S | S | 54,000 | 45,000 | 50,000 | 48,000 | 75,000 | 74,000 |
| Wyoming. | 54,000 | 50,000 | S | S | S | 63,400 | S | S | S | S |
| Pacific... | 70,000 | 63,500 | 80,000 | 63,000 | 58,000 | 67,000 | 59,000 | 60,000 | 77,000 | 80,000 |
| Alaska.. | 62,000 | 60,000 | S | S | 53,000 | S | S | S | S | 55,800 |
| California. | 72,000 | 65,000 | 82,500 | 70,000 | 60,000 | 70,000 | 61,000 | 60,000 | 80,000 | 88,000 |
| Hawaii. | 60,000 | 57,700 | S | S | 58,000 | 62,000 | 55,400 | 55,000 | 95,000 | 60,000 |
| Oregon..... | 56,100 | 52,000 | 70,000 | 54,300 | 52,000 | 53,000 | 49,300 | 45,000 | 60,000 | 62,000 |
| Washington....................... | 62,000 | 58,000 | 70,000 | 50,000 | 52,000 | 56,000 | 61,000 | 60,000 | 70,000 | 70,000 |
| U.S. teritories and other areas. | 50,000 | 45,000 | S | S | 42,600 | 56,000 | S | S | S | 65,000 |

NOTE: Numbers are rounded to nearest hundred.
Median salaries were computed for full-time employed individuals only.
Since the SDR sample design did not include geography, the reliability of estimates in some states may be poor due to a small sample size.
KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

## Appendix A. Technical Notes

123

## Appendix A. Technical Notes ${ }^{1}$

The data on doctoral scientists and engineers contained in this report come from the 1997 Survey of Doctorate Recipients (SDR). The SDR is a longitudinal panel survey of individuals who have received their doctorates mainly in the sciences or engineering fields. Since the 1970s, this study has been conducted every two years for the National Science Foundation (NSF) and other Federal sponsors. ${ }^{2}$

The National Opinion Research Center conducted the SDR for the first time in 1997. Data collected in the SDR are part of the Scientists and Engineers Statistical Data System (SESTAT) surveys that are sponsored and maintained by the NSF. Additional data on education and demographic information come from the Doctorate Records File (DRF), which contains data from an ongoing census of all research doctorates earned in the United States since 1920.

## The Sampling Frame and Target Population

The sampling frame for the 1997 SDR was compiled from the DRF to include individuals who:

1. had earned a doctoral degree from a U.S. college or university in a science or engineering field; ${ }^{3}$
2. were U.S. citizens, or, if non-U.S. citizens, indicated they had plans to remain in the United States after degree award; and
3. were under 76 years of age.

The 1997 SDR frame consisted of the 1995 SDR sample supplemented with graduates who had earned their degrees since the 1995 survey and who met the conditions listed above. Those who were carried over from 1995 but had attained the age of 76 (or died) were deleted from the frame.

[^33]The survey had two additional eligibility criteria for the survey target population. The sampled member must be a resident in the United States and not institutionalized as of the survey reference date.

## Sample Design

In 1997, the SDR sample size was 54,103 . The total sample was selected from 2 groups:

1. 1995 sample members who were still eligible in 1997 , and
2. a sample of the 1995-96 graduating cohort.

Group 2 cases were oversampled in 1997 to obtain more precise estimates on the recent doctorates data. A maintenance cut was done to the sample to keep the sample size of the Group 1 cases roughly the same as it was in 1995.

The basic sampling design was a stratified design where strata were defined by 15 broad fields of study, 2 genders, and an 8 -category "group" variable combining race/ ethnicity, handicap status, and citizenship status. As in the prior years, the goals were to maintain a fairly constant sample size and to equalize probabilities of selection to the extent possible. The primary changes for 1997 were an oversample of the 1995-96 cohort, and a slight redefinition of strata by field of study. The stratification variables were the same, but the classifications for field of study were revised in 1997. Humanities graduates were interviewed in 1995, but not in 1997.

The overall sampling rate was about 1 in 12 ( 8.5 percent) in the 1997 SDR, applied to an estimated population of 632,800 . However, sampling rates varied considerably within and between the strata. These differences resulted from oversampling to provide a useful sample size for the recent doctorate cohorts, women, minority groups and other groups of special interest, and the accumulation of sample size adjustments over the years.

## Survey Content

The 1997 SDR retained questionnaire design changes that were implemented in 1993. In addition to a large set of core data items that are conveyed from year to year, the 1997 questionnaire included new questions covering several areas of interest. The 1995 modules on the work history and postdocs were dropped
and a new module on the recent doctorates was added in 1997. Also a new question was asked of the respondents to classify employer's main business in addition to a series of questions on temporary or alternative work arrangements, job security concerns, job satisfaction, and household income.

## Data Collection

The 1997 SDR data collection consisted of two phases: a self-administered mail survey, followed by computer assisted telephone interviewing (CATI) of a sample of the nonrespondents to the mail survey. The mail survey consisted of an advance letter and the several waves of a personalized mailing package, with a reminder postcard between the $1^{\text {st }}$ and $2^{\text {nd }}$ questionnaire mailing. The advance letter was sent in May 1997, followed by the $1^{\text {st }}$ mailing in early June. The second mailing was sent in August 1997. To increase the mail response rate, an additional follow-up mailing occurred via Federal Express. The CATI follow-up ended in March 1998.

## Response Rates

The overall unweighted response rate for the 1997 SDR was 85 percent. The response to the mail phase of the survey was about 55 percent. The overall weighted response rate was about 78 percent (weighted response divided by the weighted sample cases.)

## Data Preparation

Data preparation for the 1997 SDR included pre-data entry edit, data entry, coding, telephone call backs for critical items and sample verification, post-data entry editing and data review, and imputation. As completed survey mail questionnaires were received, they were logged and transferred to the pre-data entry editing at NORC for processing.

The data from the questionnaire were keyed into the database in a process known as CADE (ComputerAssisted Data Entry). The data entry program, SurveyCraft, contained a full complement of range, consistency, skip error checks to prevent entry errors and inconsistent answers. Three on-line coding programs were tied into the SDR CADE program to ease data entry of special codes: IPEDS for educational institutions, Federal Information Processing Standards (FIPS) for U.S. states and foreign countries, and Primary Field of Study/Education. Consistency checks were also built into the CATI program along with the skip patterns. Some consistency checks were performed on a num-
ber of variables prior to the merge of the CADE and CATI data files to ensure complete compatibility. Computer checks also flagged the cases with missing key items (employment status, occupation, birthdate, etc.) and the telephone call-backs were made to obtain the response; otherwise they were considered as incomplete responses.

A detailed edit specification was developed from the SESTAT surveys edit guideline to perform further computer editing of multiple values to "Mark One". questions, skip errors, range errors, inter-item inconsistencies, cross year inconsistencies. "Other Specify" responses were coded using the SESTAT coding guidelines and respondents' occupational data was reviewed along with other work-related data from the questionnaire to "correct" known respondent self-reporting problems to obtain the "best" occupation codes.

Basic frequency distributions of all survey items showed item nonresponse rates to be generally less than 3 percent. Nonresponse to a few questions deemed somewhat sensitive, such as annual salary or household income, was around 6.5 percent. To compensate for the item nonresponse, data not reported by the respondents, as well as response of "refused" or "don't know" were imputed. Two imputation methods were used: (1) logical imputation, and (2) hot deck imputation. For logical imputation, either the respondent's answers to related questions determined what the missing value had to be, or the respondent's answer to the same question in the prior survey round substituted for the missing value. The latter approach of using the historical data is often called "cold deck" imputation. Cold deck imputation is useful for variables that are static, such as place of birth or gender. When logical imputation was used, it was employed before hot deck imputation.

In hot deck imputation, a donor case is selected from the current round of respondents by matching on related variables. The donor case's response is used as a proxy for the recipient's missing variable. Hot deck imputation is the method of choice for variables that may change over time, such as employment characteristics. Hot deck is preferable to model-based imputation in this application because it easily preserves correlation among variables and maintains the valid response rages for categorical variables.

Imputation was done in a specified sequence, with key auxiliary variables being imputed first. After the key variables were imputed, variables were imputed by
questionnaire section. Within a section, variables were imputed more or less in questionnaire order, with certain exceptions. Questions used to drive skip patterns were imputed before questions affected by the skip driver. Questions new to this round were imputed last within a section. Where logical, groups of companion variables were imputed together (such as the various reasons for working outside the Ph.D. field).

## Weighting and Estimation

To enable weighted analyses of the 1997 SDR data, a sample weight was calculated for every person in the sample. The primary purpose of the weights is to create representative estimates by adjusting for unequal probabilities of selection. The second purpose is to adjust for the effects of nonresponse. Informally, a sampling weight approximates the number of persons in the Ph.D. population that a sampled person represents.

The weights were calculated in several stages. The first stage was the calculation of base weights that account for the sample design. A base weight for a respondent is the reciprocal of the probability of selection. The revised base weights ranged from 1.0 to 112.008 with a median value of 11.442 . The sum of the revised weights, 632,789 , is also an estimate of the frame size. Base weights varied within cells because different sampling rates were used depending on the year of selection and the stratification in effect at that time.

The next stage was to construct a combined weight, which took into account the subsampling of nonrespondents at the CATI phase. All respondents received a combined weight, which for mail respondents was equal to the sample weight and for CATI respondents was a combination of their original sample weight and their CATI subsample weight. The final stage was to adjust the sampling weights for unit nonresponse. (Unit nonresponse occurs when the sample member refuses to participate or cannot be located.) This was done in a group of nonresponse adjustment cells created using poststratification.

Within each nonresponse adjustment cell, a weighted nonresponse rate, which took into account both mail and CATI nonresponse, was calculated. The nonresponse adjustment factor was the inverse of this weighted response rate. The initial set of nonresponse adjustment factors was examined and, under certain conditions, some of the cells were collapsed if use of the adjustment factor would create excessive variance.

The final weights for respondents were calculated by multiplying their respective combined weights by the nonresponse adjustment factor. In data analysis, population estimates are made by summing the final weights of all respondents who possess a particular characteristic.

## Reliability

Because the estimates produced from this survey are based on a sample, they may vary from those that would have been obtained if all members of the target population had been surveyed (using the same questionnaire and data collection methods). Two types of error are possible when population estimates are derived from measures of a sample: nonsampling error and sampling error. By looking at these errors, it is possible to estimate the accuracy and precision of the survey results.

Sampling error is the variation that occurs by chance because a sample, rather than the entire population, is surveyed. The particular sample that was used to estimate the 1997 population of science and engineering doctorates in the United States was one of a large number of samples that could have been selected using the same sample design and size. Estimates based on each of these samples would have differed.

Sampling errors were developed using a generalized variance procedure in order to provide approximate sampling errors that would be applicable to a wide variety of items. As a result, these sampling errors provide an indication of the order of magnitude of a sampling error rather than a precise sampling error for any specific item. This method first computes the variances associated with selected variables for certain subsets of the sample. The variances of the selected variables were computed using SUDAAN software and the Taylor series approximation method, which can incorporate finite correction factors. The finite correction factors are important for the SDR sample design where some strata had high sampling fractions.

The estimated variances for the selected variables were used to estimate regression coefficients for use in generalized variance functions that estimate the standard errors associated with a broader range of totals and percentages. For each of the demographic groups and fields of study shown in Appendix D, 31 models from the variables listed above were combined into a nonlinear regression to fit a predictive model for standard errors, as described below.

Appendix taple D. shows model parameters, $\underline{a}$ and $\underline{b}$, that can be used to approximate standard errors for the S\&E doctoral population overall, for broad field groupings used by NSF, and for selected subgroups of analytic interest. ${ }^{4}$ Let $x$ denote the estimated total for which a standard error is desired. The standard error can be approximated using the appropriate values of $\underline{a}$ and $\underline{b}$ along with the following formula for standard errors of totals:

$$
S x=\left[x^{2}+b x\right]^{1 / 2}
$$

Percentages are another type of estimate for which standard errors may be desired. The standard error of a percentage may be approximated using the formula:

$$
\mathrm{Sp}=\mathrm{p}[\mathrm{~b}((1 / \mathrm{x})-(1 / \mathrm{y}))]^{1 / 2}
$$

where $p$ equals the percentage possessing the specific characteristic and $x$ and $y$ represents the numerator and denominator, respectfully, of the ratio that yields the observed percentage.

In addition to sampling error, data are subject to nonsampling error, which can arise at many points in the survey process. Sources of nonsampling error takes many different forms: (1) nonresponse bias, which arises when the characteristics between individuals who do not respond to a survey differ significantly from those who do; (2) measurement error, which arises when we are not able to precisely measure the variables of interest; (3) coverage error, which arises when some members of the target population are not identified and thus do not have a chance to be selected for the sample; (4) processing error, which can arise at the point of data editing, coding or key entry. These sources of error are much harder to estimate than sampling errors.

## Important Notes on the Tables

Please note several changes that were made in the 1997 tables from 1993 and 1995 reports:

1. Doctorate field groups were changed as follows:
[^34]- Health sciences is now shown separately from the biological sciences (characteristics between these two field are deemed to be too different to be shown combined);
- Other physical sciences, including earth sciences, were combined with geology and oceanography to form a new combined group, earth/atmospheric/ ocean sciences (individual field counts are too small thus the meaningful groups are combined together);
- Anthropology is separated from sociology and is combined with other social sciences;
- Psychology is now shown separately from the social sciences (characteristics between psychology and other social sciences are deemed to be too different to be shown combined);
- Industrial engineering is combined with other engineering (number was getting too small); materials/metallurgical engineering is now shown separately; and
- Computer/information sciences and mathematical sciences are now shown separately in all broad doctorate field tables (characteristics between these two fields are deemed to be too different to be shown combined).

2. Occupation field groups were changed as follows:

- Psychologists and postsecondary teachers in psychology are shown separately from social sciences.
- Computer/information scientists and mathematical scientists are now shown separately in all broad occupation tables.

3. Following table number changes occurred:

1993 and 1995 tables no. 1997 table no.

| 17 | 21 |
| :--- | :--- |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 23 |  |
|  |  |

4. Because of the many redesign changes introduced to the 1993 SDR still retained in 1997, users are advised that the data in this report, as well as the in the 1993 or 1995 reports, are not strictly comparable with the SDR data published by NSF prior to 1993.

The following notes will help facilitate the use of data in the detailed tables.

Field of doctorate is the field of degree as specified by the respondent in the Survey of Earned Doctorates at the time of degree conferral. (See appendix B for doctorate degree field.)

Occupation data were derived from responses to several questions on the type of work primarily performed by the respondent. The occupational classification of the respondent was based on his/her principal job held during the reference week - or last job held, if not employed on the reference week (questions A26 or A5). Also used in the occupational classification was a respondent-selected job code (questions A27 or A6).

Sector of employment was based on responses to questions A15 and A17. The category "universities and 4 -year colleges" includes 4 -year colleges or universities, medical schools (including university-affiliated hospitals or medical centers), university affiliated research institutions, and other type of institutions. "Private-for-Profit" includes self-employed in incorporated business.

Employer Location was based primarily on responses to question A11 on the location of the principal employer. Individuals not reporting place of employment were classified by their last mailing address.

Place of Birth categories were defined as follows:
U.S. = Fifty states plus the Virgin Islands, Panama Canal Zone, Puerto Rico, American Samoa, Trust Territory, and Guam

Europe $=$ Albania, Armenia, Austria, Belarus, BosniaHerzegovina, Bulgaria, Czech Republic, Croatia, Estonia, Georgia, Greece, Hungary, Latvia, Lithuania, Poland, Romania, Russia, Slovakia, Ukraine, Federal Republic of Yugoslavia, Andorra, Belgium, France, Gibraltar, Luxembourg, Monaco, The Netherlands, Portugal, Spain, Switzerland, Germany, Italy, Liechtenstein, Malta, Denmark, England, Finland, Iceland, Northern Ireland, Republic off Ireland, Norway, Scotland, Sweden, Wales, Europe, not specified

Asia $=$ Afghanistan,Bahrain,Bangladesh, Cyprus, India, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Nepal, Palestine, Saudi Arabia,

Sri Lanka, Syria, Turkey, Cambodia, People's Republic of China, Philippines, Taiwan, China Unspecified, Hong Kong, Japan, Republic of Korea, Korea Unspecified, Laos, Malaysia, Singapore, Thailand, Democratic Republic of Vietnam, Republic of Vietnam, Asia, not specified

North $=$ Bermuda, Canada, Greenland, North America America, not specified

$$
\left.\begin{array}{rl}
\text { Central }= & \text { Belize, Costa Rica, El Salvador, America } \\
\text { America } \quad \begin{array}{l}
\text { Guatemala, Honduras, Mexico, Nicaragua, } \\
\text { Panama, Central America, not specified }
\end{array} \\
\text { Caribbean = }
\end{array} \begin{array}{l}
\text { Barbados, Cuba, Dominican Republic, Haiti, } \\
\text { Jamaica, Caribbean not specified }
\end{array}\right\}
$$

Primary work activity was determined from responses to question A38. "Development" includes the development of equipment, products, and systems. "Design" includes the design of equipment, processes, and models.

Federal support was determined from responses to questions A46 and A47.

Faculty Rank/Tenure status' was obtained from the response to questions A18 and A19.

Race/ethnicity categories of white, black, Asian $/ \mathrm{Pa}$ cific Islander and American Indian/Alaskan Native refer to non-Hispanic individuals only.

Citizenship status category of Non-U.S., temporary resident does not include individuals who, at the time they received their doctorate, expressed plans to leave the U.S. These individuals were excluded from the sampling frame.

Salary data were derived from responses to question A43, in which information was requested regarding annual salary before deductions for the principal job held during April 1997, excluding income from bonuses, overtime, and summer teaching/research. Salaries reported are median annual salaries, rounded to the nearest $\$ 100$ and computed for full-time employed scientists and engineers. For individuals employed by educational institutions, no accommodation was made to convert academic-year salaries to calendar-year salaries. Users are advised that due to a wording change in the salary question since 1993, the 1997 salary data are not strictly comparable with 1993 salary data.

Labor force participation rate. The labor force is defined as those employed (E) plus those unemployed (U-i.e., those not-employed persons actively seeking work). Population (P) is defined as all S\&E doctorate holders under age 76 , residing in U.S. during the week of April 15, 1997, who earned their doctorate from U.S.
institutions. The labor force participation rate $\left(\mathrm{R}_{\mathrm{LF}}\right)$ is the ratio of the labor force to the population ( P ).

$$
R_{L F}=(E+U) / P
$$

Unemployment rate. The unemployment rate $\left(\mathrm{R}_{\mathrm{U}}\right)$ is the ratio of those who are unemployed but seeking employment $(\mathrm{U})$ to the total labor force $(\mathrm{E}+\mathrm{U})$.

$$
\mathrm{R}_{\mathrm{LF}}=\mathrm{U} /(\mathrm{E}+\mathrm{U})
$$

Involuntarily out-of-field rate. The S\&E involuntarily out-of-field rate is the percent of employed individuals who reported they were either:

- working part-time exclusively because suitable full-time work was not available; and/or
- working in an area not related to the first doctoral degree (in their principal job) at least partially because suitable work in the field was not available.


## Appendix B. Degree Field List

## Appendix B. Degree Field List

# Computer and Mathematical Sciences Computer and Information Sciences 

400 Computer Sciences ..... D67
410 Information Sciences and Systems ..... D67
Mathematical sciences
420 Applied Mathematics ..... 841
498 Mathematics, General ..... 842
465 Operations Research ..... 843
450 Statistics ..... 844
425 Algebra ..... 845
430 Analysis and Functional Analysis ..... 845
435 Geometry ..... 845
440 Logic ..... 845
445 Number Theory ..... 845
455 Topology ..... 845
460 Computing Theory and Practice ..... 845
499 Mathematics, Other ..... 845
Biological and Agricultural Sciences
Agricultural and Food SCIENCES
005 Animal Breading and Genetics ..... 605
007 Animal Husbandry ..... 605
010 Animal Nutrition ..... 605
012 Dairy Science ..... 605
014 Poultry Science ..... 605
019 Animal Sciences, Other ..... 605
040 Food Sciences ..... 606
042 Food Distribution ..... 606
043 Food Engineering ..... 606
044 Food Sciences, Other ..... 606
020 Agronomy ..... 607
025 Plant Breeding and Genetics ..... 607
030 Plant Pathology ..... 607
032 Plant Protect./Pest Mgmt ..... 607
039 Plant Sciences, Other ..... 607
050 Horticulture Science ..... 607
045 Soil Sciences ..... 608
046 Soil Chemistry/Microbiology ..... 608
049 Soil Sciences, Other ..... 608
099 Agricultural Sciences, Other ..... 608
098 Agriculture, General ..... 608
DRF Code Field Name NSF Code
Biological sciences
100 Biochemistry ..... 631
103 Biomedical Sciences ..... 642
105 Biophysics ..... 631
198 Biological Sciences, General ..... 632
120 Plant Pathology ..... 633
125 PlantPhysiology ..... 633
129 Botany, Other ..... 633
136 Cell Biology ..... 634
154 Molecular Biology ..... 634
139 Ecology ..... 635
115 Plant Genetics ..... 636
170 Genetics, Human and Animal ..... 636
171 Genetics ..... 636
156 Microbiology/Bacteriology ..... 637
157 Microbiology ..... 637
110 Bacteriology ..... 637
163 Nutritional Sciences ..... 638
180 Pharmacology, Human and Animal ..... 639
185 Physiology,Human and Animal ..... 640
186 Physiology, Animal and Plant ..... 640
148 Entomology ..... 641
175 Pathology,Human and Animal ..... 641
189 Zoology ..... 641
107 Biotechnology Research ..... 642
133 Biometrics and Biostatistics ..... 642
130 Anatomy ..... 642
140 Hydrobiology ..... 642
142 DevelopmentalBiology ..... 642
145 Endocrinology ..... 642
151 Immunology ..... 642
160 Neurosciences ..... 642
166 Parasitology ..... 642
169 Toxicology ..... 642
199 Biological Sciences, Other ..... 642
Environmental life sciences, Including forestry sciences
580 EnvironmentalSciences ..... 680
055 Fisheries Sciences ..... 680
054 Fish and Wildlife ..... 680
060 Wildlife ..... 681
065 Forestry Science ..... 681
066 Forest Biology ..... 681
068 Forest Engineering ..... 681
070 Forest Management ..... 681
072 Wood Science ..... 681
074 Renewable Natural Resources ..... 681
079 Forestry and Related Sciences, Other ..... 681
080 Wildlife/RangeManagement ..... 681
HEALTH AND RELATED SCIENCES
200 Audiology and Speech Pathology ..... 781
212 Health Systems/Services Administration ..... 782
225 Medicine and Surgery ..... 786
205 Dentistry ..... 786
235 Optometry/Opthamology ..... 786
250 VeterinaryMedicine ..... 786
230 Nursing ..... 787
240 Pharmacy ..... 788
245 Rehabilitation/TherapeuticServices ..... 789
220 Epidemiology ..... 790
215 Public Health ..... 790
210 EnvironmentalHealth ..... 790
219 Public Health/Epidemiology ..... 790
222 Exercise Physiology/Kinesiology ..... 791
224 Hospital Administration ..... 791
299 Health Sciences, Other ..... 791
298 Health Sciences, General ..... 791
Physical and Related Sciences
Chemistry, except biochemistry
526 Organic ..... 873
528 Pharmaceutical ..... 873
530 Physical ..... 873
532 Polymer ..... 873
534 Theoretical ..... 873
538 Chemistry,General ..... 873
539 Chemistry, Other ..... 873
524 Nuclear ..... 873
520 Analytical ..... 873
522 Inorganic ..... 873
521 Agriculture and Food ..... 873
EARTH, ATMOSPHERIC, OCEAN SCIENCES
514 Meteorology ..... 872
518 Atmos. and Metero. Sciences, General ..... 872
519 Atmos. and Metero. Sciences, Other ..... 872
512 Atmospheric Dynamics ..... 872
510 Atmospheric Physics and Chemistry ..... 872
540 Geology ..... 875
548 Mineralogy,Petrology ..... 875
549 Mineralogy/Petrol/Geochemistry ..... 875
550 Stratigraphy/Sedimentation ..... 875
552 Geomorphol and Glacial Geology ..... 875
DRF Code Field Name NSF Code
EARTH, ATMOSPHERIC, OCEAN SCIENCES (CONTINUED)
554 Applied Geology ..... 875
555 Applied Geology/GeologyEngr ..... 875
547 Fuel Tech. and Petrol. Engineering ..... 876
558 Geological Sciences, General ..... 876
559 Geological Sciences, Other ..... 876
546 Paleontology ..... 876
545 Geophysics ..... 876
544 Geophysics and Seismology ..... 876
542 Geochemistry ..... 876
590 Oceanography ..... 877
585 Hydrology and Water Resources ..... D87
595 Marine Sciences ..... D87
599 Miscellaneous Physical Sciences, Other ..... D87
Physics and astronomy
500 Astronomy ..... 871
505 Astrophysics ..... 871
506 Astronomy and Astrophysics ..... 871
566 Fluids ..... 878
567 Mechanics ..... 878
568 Nuclear ..... 878
569 Optics ..... 878
570 Plasma ..... 878
572 Polymer ..... 878
573 Thermal ..... 878
574 Solid State ..... 878
575 Theoretical ..... 878
578 Physics, General ..... 878
579 Physics, Other ..... 878
563 Electromagnetism ..... 878
564 Elementary Particles ..... 878
560 Acoustics ..... 878
561 Atomic and Nuclear ..... 878
562 Electronic Physics ..... 878
Social Sciences
Economics
666 Economics ..... 923
668 Econometrics ..... 923
000 AgriculturalEconomics ..... 601
DRF Code Field Name .. NSF Code
Political science and related sciences
682674
902
Public Policy Studies927
679 ..... 928
Political Sciences/Public Adm.International Relations
678 ..... 928
Sociology
686
Sociology ..... 929
Other social sciences
650 Anthropology ..... 921
652 Area Studies ..... 620
658 Criminology ..... 922
670 Geography ..... 924
710 History of Science ..... 925
729 Linguistics ..... 771
773 Archeology ..... 921
694 Urban Studies ..... 930
698 Social Sciences, General ..... 930
699 Social Sciences, Other ..... 930
662 Demography ..... 930
690 Social Statistics ..... 930
Psychology
618 EducationalPsychology ..... 704
600 Clinical ..... 891
609 Counseling ..... 892
615 Experimental ..... 893
620 Family and Marriage Counseling ..... 897
613 Human/Individualand Family Development ..... 897
648 Psychology,General ..... 894
621 Industrial and Organization. ..... 895
639 Social ..... 896
619 Human Engineering ..... 897
624 Personality ..... 897
627 Physiological ..... 897
630 Psychometrics ..... 897
633 Quantitative ..... 897
636 School ..... 897
616 Exper/Compar/Physiol ..... 897
612 Developmentaland Child ..... 897
649 Psychology,Other ..... 897
606 Comparative ..... 897
603 Cognitive ..... 897
DRF Code Field Name NSF Code
Engineering
Aerospace and related engineering300Aerospace/Aeronaut/Astronaut721
Chemical Engineering
312 Chemical ..... 725
Civil engineering
315 Civil ..... 726
ELECTRICAL, ELECTRONIC, COMPUTER AND COMMUNICATIONS ENGINEERING
372 Systems ..... 727
321 Computer ..... 727
324 Electrical/Electronics ..... 728
323 Electronics ..... 728
322 Electrical ..... 728
318 Communications ..... 728
Materials and Metallurgical Engineering
309 Ceramic ..... 734
342 Materials Science ..... 734
369 Polymer ..... 734.
375 Textile ..... 734
348 Metallurgical ..... 736
Mechanical engineering
345 Mechanical ..... 735
OTHER ENGINEERING
303 Agricultural ..... 722
306 Bioengineeringand Biomedical ..... 724
327 Engineering Mechanics ..... 729
330 Engineering Physics ..... 729
333 Engineering Science ..... 729
336 Environmental Health Engr ..... 730
339 Industrial ..... 733
398 Engineering, general ..... 731
351 Mining and Mineral ..... 737
354 Naval Arch and Marine Eng ..... 738
357 Nuclear ..... 739
366 Petroleum ..... 740
360 Ocean ..... D74
363 Operations Research (Engr.) ..... D74
399 Engineering, Other ..... D74

## Appendix C. Occupation Field List

## Appendix C. Occupation Field List

### 1.0 Computer and Mathematical Sciences

### 1.1Computer and information sciences

520 Computer systems analysts
530 Computer scientists, except systems analysts
540 Information systems scientists and analysts
550 Other computer and information science occupations
880 Computer engineers-software

### 1.2 Mathematical Sciences <br> 172 Mathematicians <br> 173 Operations research analysts, modeling <br> 174 Statisticians <br> 176 Other mathematical scientists

### 1.8 Postsecondary teachers in Computer and Mathematical sciences <br> 276 Postsecondary Teachers-Computer <br> 286 Postsecondary Teachers-Mathematical Science

### 2.0 Life and Related Sciences

### 2.1 Agricultural and food sciences <br> 210 Agricultural and food scientists

### 2.2 Biological sciences

022 Biochemists and biophysicists
023 Biological scientists
025 Medical scientists, except practitioners
027 Other biological and life scientists

### 2.3 ENVIRONMENTAL LIFE SCIENCES, INCLUDING FORESTRY SCIENCES <br> 024 Forestry and conservation scientists

### 2.8 Postsecondary teachers in Life and related sciences

271 Postsecondary teachers-Agriculture
273 Postsecondary teachers-Biological scientists
287 Postsecondary teachers-Medical science
297 Other postsecondary teachers-Natural sciences

### 3.0 Physical and Related Sciences <br> 3.1CHEMISTRY, EXCEPT BIOCHEMISTRY <br> 193 Chemists, except biochemists

3.2 EARTH SCIENCE, GEOLOGY AND OCEANOGRAPHY
192 Atmospheric and space scientists
194 Geologists, including earth sciences
195 Oceanographers
3.3 Physics and astronomy
191 Astronomer
196 Physicists
3.4 OTHER PHYSICAL SCIENCES
198 Other physical and related sciences
3.8 Postsecondary teachers in Physical and related sciences
275 Postsecondary teachers-Chemistry
277 Postsecondary teachers-Earth, environmental and marine science
289 Postsecondary teachers-Physics
4.0 Social and Related Sciences
4.1 Economics232 Economists
4.2 Political science and related sciences
235 Political Scientists
4.3 Psychology
236 Psychologists, including clinical psychologists
4.4 Sociology and anthropology
231 Anthropologists
237 Sociologists
4.5 Other social sciences
233 Historians, science and technology
238 Other Social Scientists
4.7 Postsecondary teachers in Social and related sciences278 Postsecondary teachers-Economics290 Postsecondary teachers-Politics
291 Postsecondary teachers-Psychology
293 Postsecondary teachers-Sociology
298 Postsecondary teachers-Other social sciences
5.0 Engineering
5.1 Aerospace and related engineering
082 Aeronautical, aerospace and astronautical engineersY 124
5.2 Chemical engineering
085 Chemical engineers
5.7 Civil and architectural engineering
086 Civil engineers, including architectural and sanitary
5.4 ELECTRICAL, ELECTRONIC, COMPUTER AND COMMUNICATIONS ENGINEERING
087 Computer engineers - Hardware
089 Electrical and electronics engineers
5.5 INDUSTRIAL ENGINEERING
091 Industrial engineers
5.6 Mechanical engineering
094 Mechanical engineers
5.7 Other engineering083 Agricultural engineers
084 Bioengineering and biomedical engineers
090 Environmental engineers
092 Marine engineers and naval architects
093 Materials and metallurgical engineers
095 Mining and geological engineers
096 Nuclear engineers
097 Petroleum engineers
098 Sales engineers
099 Other engineers
5.8 Postsecondary teachers in engineering
280 Postsecondary teachers-engineering
6.0 Non-S\&E Occupations
6.1 Management and administration
141 Top and mid-level managers, executives, administrators
151 Accountants, auditors, and other financial specialists
152 Personnel, training and labor relations specialists
153 Other management related occupations
6.2 Health and related
111 Diagnosing and treating health practitioners
112 Registered nurses, pharmacists, dieticians, therapists, etc.
113 Health technologists and technicians
114 Other health occupations
6.3 Non-postsecondary Teaching and related
251 Teachers, Pre-kindergarten and kindergarten
252 Teachers, Elementary school
253 Teachers, Secondary-Computer, math or science
254 Teachers, Secondary-Social sciences
255 Teachers, Secondary-Other subjects
256 Teachers, Special education
257 Teachers, Other precollegiate education
6.4 Non-S\&E postsecondary teaching272 Postsecondary teachers-Art, drama, and music
274 Postsecondary teachers-Business commerce and marketing
279 Postsecondary teachers-Education
281 Postsecondary teachers-English
282 Postsecondary teachers-Foreign language
283 Postsecondary teachers-History
284 Postsecondary teachers-Home economics
285 Postsecondary teachers-Law
288 Postsecondary teachers-Physical education
292 Postsecondary teachers-Social work
294 Postsecondary teachers-Theology
295 Postsecondary teachers-Trade and industrial
296 Postsecondary teachers-Other health specialties
299 Postsecondary teachers-Other non-S\&E not listed above
6.5 Social service and related
040 Clergy and other religious workers
070 Counselors, educational and vocational
240 Social workers
6.6 Technology and technical026 Technologists/technicians in biology/life sciences
051 Computer programmers
$100 \mathrm{E} \& \mathrm{E}$, industrial, mechanical engineering technologist/technicians
101 Drafting occupations, including computer drafting
102 Surveying and mapping engineering technicians
103 Other engineering technologists and technicians
104 Surveyors
175 Technologists/Technicians in mathematical sciences
197 Technologists/Technicians in physical sciences
6.7 SALES AND MARKETING200 Sales/Marketing-Insurance, securities, real estate, and business services201 Sales Occupations-Commodities, except retail
202 Sales Occupations-Retail
203 Other marketing and sales occupations
6.8 ART, HUMANITIES AND RELATED
010 Artists, broadcasters, editors, entertainers, public relations specialists, writers
234 Historians, except science and technology
6.9 Other non-S\&E
031 Accounting clerks and bookkeepers
032 Secretaries, receptionists and typists
033 Other administrative
081 Architects
110 Farmers, foresters, and fishermen
120 Lawyers and judges
130 Librarians, archivists and curators
171 Actuaries
221 Food preparation and service workers
222 Protective service workers
223 Other service occupations, except health
401 Construction trades, miners and well drillers
402 Mechanics and repairers
403 Precision production occupations
404 Operators and related occupations
405 Transportation and material moving occupations
500 Other Occupations
995 Other Fields (Not Listed)
999 Unknown/Not Applicable
Other categories
000 Never Worked
997 Not on Survey
998 Logical Skipped

## Appendix D. Generalized Variance Function (GVF) Tables


 G890EO LZ
$-0.000292$ 21.478287
$-0.00235$ 24.495633
$-0.006645$ 26.658114
 N
N
N
N © 17.517255
0.006407 $90 \angle 668^{\circ} \angle 1$

| ơ |
| :--- |
| $\mathbf{O}$ |
| 8 | 17.416621

$-0.015137$
17.937842
-0.001084
24.848397
-0.00222
26.398445 $11.816135 \quad 26.398445$ $-0.000481 \quad-0.009553$ $9.293523 \quad 20.294082$ 17.574747

| Field of doctorate | Parameter | All | Female | White | Asian | Black | American Indian/Alaskan Native | Hispanic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Science and engineering, Total................... | a | -0.000024 | -0.000094 | $-0.000027$ | $-0.000095$ | -0.000079 | 0.001763 | 0.000196 |
|  | b | 20.232903 | 15.149944 | 20.72127 | 18.686566 | 12.705895 | 14.15559 | 12.995122 |
| Sciences................................................... | a | -0.00003 | -0.000099 | $-0.000033$ | $-0.000139$ | -0.000022 | 0.001844 | 0.000144 |
|  | b | 19.663329 | 15.262763 | 20.145051 | 17.969387 | 11.757938 | 14.982789 | 13.199846 |
| Computer and mathematical sciences......... | a | -0.000464 | -0.002212 | -0.0005 | $-0.001425$ | 0.026547 | 0.283845 | 0.008215 |
|  | b | 20.091003 | 12.827339 | 19.824503 | 21.521454 | 4.835119 | $-0.0073$ | 13.169017 |
| Computer and information sciences............. | a | $-0.001845$ | -0.004028 | $-0.001664$ | $-0.002922$ | 0.129749 | -0.034 | 0.214927 |
|  | b | 20.713524 | 7.13076 | 19.100579 | 21.19831 | 2.254268 | 0.770419 | 0.968027 |
| Mathematical sciences............................. | a | -0.000624 | -0.003706 | -0.000677 | -0.002091 | 0.054928 | 0.393259 | 0.003389 |
|  | b | 20.058239 | 15.140621 | 19.983911. | 20.342138 | 0.858148 | -0.10279 | 12.380153 |
| Life and related sciences........................... | a | -0.00007 | -0.000214 | -0.000077 | $-0.000345$ | 0.000145 | 0.010391 | 0.000345 |
|  | b | 15.281118 | 11.871579 | 15.616633 | 14.531558 | 9.258944 | 4.096479 | 8.480597 |
| Agricultural and food sciences.................... | a | -0.000872 | -0.005658 | $-0.000949$ | $-0.003377$ | 0.012182 | 0.280027 | 0.017791 |
|  | b | 19.276192 | 16.364908 | 19.567888 | 17.516577 | 6.783573 | 0.911722 | 6.230076 |
| Biological and health sciences................... | a | -0.000079 | -0.000224 | $-0.000086$ | $-0.000386$ | 0.000039 | 0.013465 | 0.000113 |
|  | b | 14.83711 | 11.652207 | 15.180441 | 13.972145 | 9.026595 | 3.902157 | 8.715575 |
| Environmental life sciences....................... | a | -0.002929 | -0.017896 | $-0.003228$ | 0.045602 | 0.42929 | 0.196741 | 0.281755 |
|  | b | 18.232159 | 13.266102 | 18.402555 | 11.201389 | 0.398229 | 0.480885 | 1.320654 |
| Physical and related sciences.................... | a | -0.000145 | $-0.000997$ | $-0.000156$ | -0.000581 | 0.007352 | 0.04467 | -0.000627 |
|  | b | 21.945816 | 17.410416 | 22.01546 | 21.304705 | 9.986558 | 13.687949 | 19.212837 |
| Chemistry (except biochem)...................... | a | -0.000296 | -0.001635 | -0.000331 | -0.001065 | 0.012744 | 0.102262 | 0.00177 |
|  | b | 24.295076 | 18.79464 | 24.810838 | 21.723233 | 8.647245 | 13.402229 | 16.996885 |
| Geology and oceanography....................... | a | -0.000995 | -0.007282 | $-0.001009$ | -0.003614 | -0.073678 | 0.155894 | -0.003477 |
|  | b | 18.283583 | 15.452059 | 18.244082 | 15.52674 | 2.375153 | 0.664785 | 17.574747 |


|  |  |  |  |  |  |  |  |  |  | Page 2 of 3 <br> - Foreign |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field of doctorate | Parameter | All | Female | White | Asian | Black | American <br> Indian/Alaskan <br> Native | Hispanic | 1995-96 <br> Cohort |  |
| Physics and astronomy .............................. | a | -0.000429 | -0.004623 | -0.000461 | -0.001505 | 0.053159 | 0.273376 | -0.00045 | -0.001074 | -0.002734 |
|  | b | 20.645565 | 14.595172 | 20.473608 | 20.914248 | 3.33927 | 0.287338 | 18.951945 | 11.95886 | 24.264742 |
| Other physical sciences............................ | a | -0.009866 | $-0.014956$ | $-0.010663$ | 0.094785 | 0.771164 | 0.745162 | 0.53882 | -0.010718 | 0.298198 |
|  | b | 19.374057 | 15.821797 | 17.517231 | 14.022327 | 0.448199 | 0.781607 | 0.704011 | 8.852852 | 2.444919 |
| Social and related sciences....................... | a | -0.000105 | -0.000254 | -0.000113 | $-0.000371$ | -0.000746 | 0.012824 | 0.001185 | -0.000022 | -0.001464 |
|  | b | 23.642372 | 18.419134 | 24.427464 | 18.182615 | 13.637331 | 10.694843 | 11.741858 | 11.021691 | 22.888345 |
| Economics. | a | -0.000813 | $-0.002897$ | $-0.000776$ | $-0.001443$ | 0.022294 | 0.20888 | 0.079184 | 0.000168 | -0.004901 |
|  | b | 27.901272 | 13.756899 | 27.852654 | 20.56361 | 12.936106 | 2.025526 | 1.97254 | 10.661175 | 26.112712 |
| Political sciences.................................... | a | -0.001265 | -0.004448 | -0.001388 | 0.007285 | 0.008958 | 0.620476 | 0.028923 | 0.003355 | -0.010464 |
|  | b | 30.740477 | 18.628215 | 32.054004 | 15.339387 | 10.537346 | 0.710545 | 6.213745 | 11.744591 | 24.626077 |
| Psychology.......................................... | a | -0.000197 | $-0.000441$ | -0.000211 | -0.000912 | -0.003485 | 0.015737 | -0.001443 | -0.000168 | -0.004031 |
|  | b | 22.029115 | 19.76502 | 22.706156 | 11.403181 | 14.992655 | 8.687126 | 12.367131 | 10.814714 | 17.004236 |
| Sociology and anthropology...................... | a | $-0.000669$ | $-0.001374$ | $-0.000771$ | 0.001165 | 0.000719 | 0.150139 | 0.013216 | -0.000601 | -0.001964 |
|  | b | 21.807267 | 16.808106 | 23.301466 | 9.610278 | 6.542606 | 1.312996 | 4.193325 | 10.258593 | 14.645076 |
| Other social sciences. | a | $-0.001357$ | -0.002782 | $-0.001443$ | 0.002559 | 0.003794 | 0.255084 | 0.114433 | 0.000149 | -0.002857 |
|  | b | 27.673657 | 18.946937 | 28.56068 | 19.54313 | 10.357035 | 0.096308 | 2.018867 | 11.836137 | 19.245046 |
| Engineering............................................. | a | $-0.000135$ | -0.001877 | $-0.000143$ | -0.000307 | -0.000731 | 0.065553 | 0.003143 | -0.000259 | -0.00063 |
|  | b | 23.911762 | 13.316046 | 25.099797 | 20.346603 | 16.648171 | 1.100106 | 12.775474 | 9.673781 | 20.645608 |
| Aeronautical/astronautical engineering......... | a | -0.002378 | -0.152869 | -0.001488 | -0.006436 | -0.07224 | 0.470717 | 0.301029 | -0.00316 | -0.017505 |
|  | b | 23.91485 | 9.210093 | 24.332356 | 20.137258 | 4.032171 | 1.096085 | 4.999338 | 9.814938 | 25.997467 |
| Chemical engineering.............................. | a | $-0.000877$ | -0.012176 | -0.000851 | -0.002339 | 0.109684 | 0.53478 | 0.054738 | -0.002085 | -0.006151 |
|  | $b$ | 24.052324 | 13.049035 | 24.968387 | 20.355464 | 2.47499 | 1.893646 | 6.510081 | 10.466707 | 22.25003 |


|  |  |  |  |  |  |  |  |  |  | Page 3 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Field of doctorate | Parameter | All | Female | White | Asian | Black | American Indian/Alaskan Native | Hispanic | 1995-96 <br> Cohort | Foreign |
| Civil engineering...................................... | b | $\begin{array}{\|c\|} \hline-0.001091 \\ 22.153612 \end{array}$ | $\begin{array}{r} -0.012471 \\ 11.297929 \end{array}$ | $\begin{array}{r} -0.000699 \\ 21.64021 \end{array}$ | $\begin{array}{r} \hline-0.000756 \\ 20.33911 \end{array}$ | $\begin{aligned} & \hline 0.086622 \\ & 8.579907 \end{aligned}$ | $\begin{aligned} & 0.050728 \\ & 1.254839 \end{aligned}$ | $\begin{array}{r} 0.07148 \\ 7.228125 \end{array}$ | $\begin{array}{r} \hline-0.000692 \\ 9.226534 \end{array}$ | $\begin{array}{r} \hline-0.005031 \\ 21.253607 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| Electrical, computer engineering................. | b | $\begin{array}{r} -0.000637 \\ 26.441873 \end{array}$ | $\begin{array}{r} -0.003844 \\ 6.569228 \end{array}$ | $\begin{array}{r} -0.00073 \\ 28.52405 \end{array}$ | $\begin{array}{r} -0.000795 \\ 18.133374 \end{array}$ | $\begin{aligned} & 0.035405 \\ & 3.212409 \end{aligned}$ | $\begin{gathered} -0.001001 \\ 10.744708 \end{gathered}$ | $\begin{array}{r} 0.027452 \\ 11.771131 \end{array}$ | $\begin{array}{r} -0.000953 \\ 9.857609 \end{array}$ | -0.001902 20.760058 |
|  |  |  |  |  |  |  |  |  |  | 20.760058 |
| Industrial engineering................................. | b | -0.00471419.925106 | $\begin{array}{r} -0.029746 \\ 18.755381 \end{array}$ | $\begin{gathered} -0.00458 \\ 18.19022 \end{gathered}$ | -0.01628525.128298 | 0.1179492.430541 | 0.7085630.298271 | $\begin{array}{r} -0.054803 \\ 4.305273 \end{array}$ | $-0.006022$ 9.934907 | $\begin{array}{r} -0.018049 \\ 17.534647 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| Mechanical engineering............................. | b | $\begin{array}{r} -0.000848 \\ 21.041164 \end{array}$ | $\begin{array}{r} -0.018552 \\ 16.148224 \end{array}$ | $\begin{array}{r} -0.000524 \\ 19.980719 \end{array}$ | $\begin{gathered} \cdot \\ -0.002179 \\ 20.415118 \end{gathered}$ | $\begin{aligned} & 0.199099 \\ & 4.493056 \end{aligned}$ | $\begin{array}{r} 0.12058 \\ 1.945219 \end{array}$ | 0.018237 | -0.0018.910516 | -0.00375318.736915 |
|  |  |  |  |  |  |  |  | 9.21845 |  |  |
| Other engineering.................................... | a | $\begin{array}{r} -0.00049 \\ 26.676798 \end{array}$ | $\begin{array}{r} -0.005883 \\ 15.32922 \end{array}$ | $\begin{array}{r} -0.000472 \\ 27.101252 \\ \hline \end{array}$ | $\begin{array}{r} -0.001405 \\ 23.669797 \end{array}$ | $\begin{array}{r} 0.020606 \\ 14.917233 \end{array}$ | $\begin{array}{r} 0.07629 \\ 1.893646 \end{array}$ | $\begin{array}{r} 0.02231 \\ 8.104554 \end{array}$ | $\begin{array}{r} -0.001268 \\ 10.685531 \\ \hline \end{array}$ | $\begin{array}{r} -0.002573 \\ 21.695164 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |

[^35]BEST COPY AVAILABLE

## Appendix E. Survey Questionnaire

151


1997

# Survey of Doctorate Recipients 

This information is solicited under the authority of the National Science Foundation Act of 1950, as amended. All information you provide will be treated as confidential and used only for research or statistical purposes by the survey sponsors, their contractors, and collaborating researchers for the purpose of analyzing data and preparing scientific reports and artictes. Any information publicly released (such as statistical summaries) will be in a form that does not personally idenkity you. Your response is voluntary and failure to provide some or all of the requested information will not in any way adversely affect you. Actual time to complete the questionnaire may vary depending on your circumstances. On the average, it will take about 25 minutes to complete the questionnaire. If you have any comments on the time required for this survey, please send them to Herman Fleming, Division of Contracts, Policy and Oversight, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230. An agency may not conduct or sponsor, and a person is not requitred to respond to a coliectlon of information unless it displays a currently valid OMB control number. The OMB number for this project is 3145-0020.

## Conducted by: National Opinion Research Center Chicago, IL

Conducted for:
the

## INSTRUCTIONS

Thank you for taking the time to complete this questionnaire. Directions for filling it out are provided with each question. Because not all questions will apply to everyone, you may be asked to skip certain questions.

- In order to get comparable data, we will be asking you to refer to the week of April 15, 1997 (e.g., April 13-April 19, 1997)'when answering most questions
- Follow all "SKIP" instructions AFTER marking a box. If no "SKIP" instruction is provided, you should continue to the NEXT question
- Either a pen or pencil may be used
- When answering questions that require marking a box, please use an "X"
- If you need to change an answer, please make sure that your old answer is either completely erased or clearly crossed out

Thanks again for your help, we really appreciate it.

PART A - Employment Status During the Reference Week of April 13-19, 1997

A1. Were you working for pay (or profit) during the week of April 15, 1997? This includes a postdoctoral appointment, being self-employed or temporarily absent from a job (e.g., illness, vacation or parental leave), even if unpaid.Yes - SKIP to A7, page 2
${ }^{2}$No

A2. (IF NO) DId you look for work during the four weeks preceding April 15, 1997 (that is, anytime between March 19 and April 15, 1997)?YesNo

A3. What were your reasons for not working during the week of April $15 ?$

Mark ( $($ ) all that apply

|  | Year Retired |
| :---: | :---: |
| $1 \square$ | Retired $\longrightarrow 19$ |
| ${ }_{2} \square$ | On layoff from a job |
| ${ }_{3} \square$ | Student |
| , $\square$ | Family responsibilities |
| ${ }_{3} \square$ | Chronic illness or permanent disability |
| - $\square$ | Suitable job not available |
| , $\square$ | Did not need or want to work |
|  | Other - Specify 2 |

$\qquad$
$\qquad$

A7. (IF WORKED DURING WEEK OF APRIL 15TH) Counting all jobs held during the week of April 15, 1997, did you USUALLY work. . .A total of 35 or more hours per week - SKIP to A10
${ }^{2}$Fewer than 35 hours per week

A8. (IF FEWER THAN 35 HOURS) During the week of April 15, did you want to work a full-time work week of 35 or more hours?YesNo

A9. What were your reasons for working a part-time work week (i.e., less than 35 hours) during the week of April 15?

Mark $\propto$ ) all that apply


SKIP to A11

A10. (IF 35 OR MORE HOURS) Although you were working during the week of April 15, had you proviously RETIRED from any position?

Examples of retirement include mandatory retirement, early retirement, or voluntary retirement

The next several questions ask about your principal employer during the woek of April 15, 1997.

A11. Who was your principal employer during the week of April 15, $1997 ?$

IF MORE THAN ONE JOB: Record employer for whom you worked the most hours that week
if emploter had more than one locaton: Record location where you usually worked

Employer Name
City/Town
State/Foreign Country
ZIP Code

A12. Thinking about your employer's main business (i.e., what your employer makes or does). under which of these categories does your employer's main business BEST fit?

IF PRINCIPAL EMPLOYER HAS MORE THAN ONE TTPE OF business: Please answer for the type of business primarily performed at the location where you work

Mark ( $X$ ) ONLY one
$1 \square$ Agriculture, forestry, or fishing ${ }_{2} \square$ Biotechnology

3Construction or mining
4 Education
${ }^{5} \square$Finance, insurance or real estate services

- $\square$ Health services ,Information technology or computer servicesAll other services (e.g., social, legal, business)ManufacturingPublic administration/governmentResearch - Specify $\geq$Transportation services, utilities or communications
${ }_{13}$Wholesale or retail trade
${ }_{14}$Other

A13. Counting all locations where this employer operates, how many people work for your principal employer? Your best estimate is fine.

## Mark (X) ONLY one

,Under 10 employees
${ }_{2}$10-24 employees
${ }_{3} \square$25-99 employees
4 100-499 employees
${ }_{3} \square$ 500-999 employees
${ }^{-} \square$
 1,000-4,999 employees5,000 + employees

A14. Did your principal employer come into being as a new business within the past 5 years?YesNo

A15. Was your principal employer during the week of April 15...

If EMPLOYER WAS A SCMOOL: Mark ( $X$ ) the type of organizational charfer (e.g., mark "state govemment" for state schools; most private schools are "private not-for-profit")
Mark ( $X$ ) ONLY oneA PRIVATE FOR-PROFIT company, business or individual, working for wages, salary or commissionsA PRIVATE NOT-FOR-PROFIT, tax-exempt, or charitable organizationSELF-EMPLOYED in own NOT INCORPORATED business, professional practice, or farmSELF-EMPLOYED in own INCORPORATED business, professional practice, or farmLocal GOVERNMENT (e.g., city, county)State GOVERNMENTU.S. military service, active duty or Commissioned Corps (e.g., USPHS, NOAA)
$\square \square$ U.S. GOVERNMENT (e.g., civilian employee)Other - Specity

A16. Was your principal employer an educational institution?
 Yes No $\rightarrow$ SKIP to A20, page 4

A17. (IF EDUCATIONAL INSTITUTION) Was this educatlonal insttution a . . .

Mark ( $X$ ) ONLY onePreschool, elementary, or middle school or system $\qquad$ SKIP to A20, page 4
$2 \square$ Secondary school or systemTwo-year college, community college, technical instituteFour-year college or university, other than a medical school
${ }_{5} \square$ Medical school (including universityaffiliated hospital or medical center)University-affiliated research instituteSomething else - Specify

A18. What was your faculty rank?

## Mark ( $X$ ) ONLY one

Not applicable at this institutionNot applicable for my positionProfessorAssociate ProfessorAssistant ProfessorInstructorLecturerAdjunct Faculty, $\square$ Other-Specity $\$$

156

A19. What was your tenure status?
Mark ( $X$ ) ONLY oneNot applicable: no tenure system at this institutionNot applicable: no tenure system for my positionTenured

4 On tenure track but not tenuredNot on tenure track

The next several questions ask about some alternative or temporary working relationships that people may have with their employers.

A20. Did any of the following apply to your relationship with your principal employer during the week of April 15, 1997 ?

## Mark ( $X$ ) Yes or No for each

1. Self-employed working as an independent contractor, independent consultant, free lance worker or otherwise self-employed $\qquad$
 $2 \square$
2. Your principal employer contracted out your senvices to other organizations (not including temporary help or employment agencies) $\qquad$2
3. Working through a temporary help or employment agency $\qquad$ $1 \square$ $2 \square$
4. Working on an "as needed", "seasonal" or short term basis${ }_{2}$
5. Job sharing2
6. Working from home for 50 percent or more of your work time $\qquad$ ${ }_{2} \square$
7. Something else - Specity 2
$\qquad$

A21. Did you answer "yes" to any of the categories above?


YesNo - SKIP to A24, page 5

A22. (IF YES) What were your reasons for having an alternative or temporary work arrangement during the week of April 15?

For this study, being self-employed is considered an alternative working relationship

Mark (X) Yes or No for each YES

No

1. Schedule flexibility $\qquad$ , $2 \square$
2. Only type of work you could find${ }_{2} \square$
3. Gain experience that may lead to a permanent job$2 \square$
4. Better pay$2 \square$
5. Family-related reasons (e.g., children, spouse's job moved) $\qquad$$2 \square$
6. In school or some type of training program $\qquad$$2 \square$
7. Enjoy being your own boss $\qquad$${ }_{2} \square$
8. Employer changed your status to temporary $\qquad$ ${ }_{2} \square$
9. Other reason - Specify?
$\qquad$
$\qquad$

A23. Which factors in A22 represent your two main reasons for holding alternative or temporary employment or being self-employed? Enter the number of the appropriate reason from A22 above
$\begin{array}{ll}\text { 1. } & \text { First reason } \\ \text { 2. } & \begin{array}{l}\text { Second reason } \\ \text { (Enter " } 0 \text { " if no second reason) }\end{array}\end{array}$

A24. If you could have any type of working relationship you wanted, would your first choice be . . .

Mark ( $X$ ) ONLY oneA permanent job (either full-time or part-dime), that is a job with no set end dateBeing self-employedSome other type of working relationship - Specify
$\qquad$
$\qquad$

A25. Concerning your principal job during the week of April 15, were any of the following benefits available to you, even if you chose not to take them?

Mark ( $X$ ) Yes or No for each

1. Health insurance that was at least partlally paid by your employer? $\qquad$$]_{2}$
2. A pension plan or a retirement plan to which your employer contributed?$2 \square$
3. A profit-sharing plan? . . . . . . . . . . . . . , $\square 2 \square$
4. Paid vacation, sick or personal days? .2 $\square$

The next set of questions asks about your work on your principal job during the week of April 15, 1997.

A26. What kind of work were you doing on your principal job held during the week of April 15, 1997-that is, what was your occupation? Please be as specific as possible, including any area of specialization
EXAMPLE: College professor - Electrical engineering
$\qquad$
$\qquad$
$\qquad$

A30. Was this job a "postdoc?"
A "postdoc" is a temporary position awarded in academe, industry, or govemment primarily for gaining additional education and training in researchYes
No -SKIP to A33

A31. What were your reasons for taking this postdoc?
Mark (X) Yes or No for each

1. Additional training in PhD field

2. Training in an area outside of PhD field $\qquad$${ }_{2} \square$
3. Work with a specific person or place $\qquad$${ }_{2} \square$
4. Other employment not available ..... , $\square{ }_{2} \square$
5. Postdoc generally expected for career in this field $\qquad$ ${ }_{2} \square$
6. Some other reason - Specify


A32. What were your two MOST important reasons for taking this postdoc? Enter number of appropriate reason from A31

1. $\qquad$ MOST important reason
2. 

SECOND MOST important reason (Enter "0" if no second reason)

A33. During what month and year did you start this job, (that is, your principal job held during the week of April 15, 1997)?
JOB STARTED $\quad|\cdot 19 \quad|$

A34. As of the week of April 15, were you licensed or certified in your occupation? Do NOT include academic degrees (e.g., BA, MA, PhD)YesNo

A35. Thinking about the relationship between your work and your education, to what extent was your work on your principal job held during the week of April 15 related to your (first U.S.) doctoral degree? Was it ...

Mark ( $X$ ) ONLY oneClosely relatedSomewhat related SKIP to A38, page 7

${ }_{3} \square$ Not related

A36. (IF NOT RELATED) Did these factors influence your decision to work in an area OUTSIDE THE FIELD OF YOUR (FIRST U.S.) DOCTORAL DEGREE?

Mark (X) Yes or No for each

1. Pay, promotion opportunities


#### Abstract

$\qquad$


$\qquad$
$\qquad$ ${ }_{2} \square$
2. Working conditions (e.g., hours, equipment, working environment)$\square$
3. Job location
4. Change in career or professional interests $\qquad$2
5. Family-related reasons (e.g., children, spouse's job moved)$2 \square$
6. Job in highest degree field not available $\qquad$2 $\square$
7. Other reason - Specify

A37. Which TWO factors in A36 represent your MOST important reasons for working in an area outsidethe field of your (first U.S.) doctoral degree? Enter number of appropriate reason from A36 above

1. $\qquad$ MOST important reason
2. 

SECOND MOST important reason (Enter " 0 " if no second most)

A38. The next question is about your work activities on your principal job. Which of the following work activities occupied 10 percent or more of your time during a TYPICAL work week on this job?

## Mark (X) Yes or No for each

1. Accounting, finance, contracts

2. Applied research - study directed toward gaining scientific knowledge to meet a recognized need $\qquad$ $\square$ $\square$
3. Basic research - study directed toward gaining scientific knowledge primarily for its own sake $\qquad$
$\square$ $2 \square$
4. Computer applications, programming, systems development $\qquad$
$\qquad$ $2 \square$
5. Development - using knowledge gained from research for the production of materials, devices $\qquad$$2 \square$
6. Design of equipment, processes, structures, models $\qquad$
 $2 \square$
7. Employee relations - including recruiting, personnel development, training $\qquad$$2 \square$
8. Managing and supervising $\qquad$
 $2 \square$
9. Production, operations, maintenance (e.g., truck driving, machine tooling, auto/machine repairing)
 $2 \square$
10. Professional services (e.g., health care, counseling, financial senvices, legal services) $\qquad$$2 \square$
11. Sales, purchasing, marketing, customer service, public relations$2 \square$
12. Quality or productivity management . . $\square \square$
13. Teaching $\qquad$2
14. Other-Specify $\longrightarrow$
 $2 \square$

A39. On which TWO activities in A38, did you work the MOST hours during a typical week on this job? Enter number of appropriate activity from A38 above

1. $\quad$ Activity MOST hours
2. $\quad$ Activity SECOND MOST hours
(Enter " 0 " if no second most)

A40. Thinking back to when you completed your highest degree, would you say your work during a TYPICAL week on this principal job is

Mark (X) ONLY one
${ }_{1} \square$ Very similar to what you expected to be doingSomewhat similar to what you expected to be doing
${ }_{3} \square$ Not very similar to what you expected to be doing

A41. Did you supervise the work of others as part of your principal job held during the week of April $15 ?$

MARK 'YEs': If you assigned duties to workers AND recommended or initiated personnel actions such as hiring, firing or promoting

TEACHERS: Do NOT count students
YesNo - SKIP qo A43, page 8

## A42.

1. Supervise DIRECTLY?
2. Supervise through
subordinate supervisors? . Number Supervised
$\qquad$
$\qquad$

A43. Before deductions, what was your basic ANNUAL salary on this job as of the week of April 15, 1997 ? (Do NOT include bonuses, overtime, or additional compensation for summertime teaching or research)

IF NOT SALARIED: Please estimate your earned income, excluding business expenses
\$ $\qquad$ .00
Bask Annual SalaryEamed income

A44. During a typical week on thls job, how many hours did you usually work?

NUMBER OF HOURS PER WEEK $\qquad$

A45. Including paid vacation and paid sick leave, upon how many weeks per year was your salary based?

NUMBER OF WEEKS PER YEAR $\qquad$

A46. During the week of April 15, 1997, was any of your work on this job supported by CONTRACTS OR GRANTS from the U.S. govemment?

Federal employees: Please answer "No"
Mark ( $X$ ) ONLY oneYes - GO to A47No——_
Don't Know SKIP to A48
$\square$

A47. (IF VES) Which Federal agencies or departments were supporting your work?

Mark (X) all that applyAgency for International Development (AID)Agriculture DepartmentCommerce Department

4 $\square$ Defense Department (DOD)Department of Education (include NCES, OERI, FIPSE, FIRST)Energy Department (DOE)Environmental Protection Agency (EPA)Health and Human Services Department (Excluding NIH)
${ }_{9}$Interior DepartmentNational Aeronautics and Space Adrninistration (NASA)
"National Institutes of Health (NIH)National Science Foundation (NSF)
${ }_{13}$Transportation Department (DOT)Other - Specity 2
${ }_{15}$DONT KNOW SOURCE AGENCY

A48. How would you rate your overall satisfaction with your principal job during the week of April 15th?

Mark (X) ONLY oneVery satisfiedSomewhat satisfiedSomewhat dissatisfied
Very dissatisfied

A49. During the week of April 15, 1997, were you working for pay (or profit) at a second job (or business), including part-ime, evening, or weekend work?YesNo - SKIP to $A 53$

A50. (IF YES) What kind of work were you doing at your second job during the week of Aprill 5that is, what was your occupation? Please be as specific as possible, including any area of specialization

IF YOU HAD MORE THAN TWO JOBS THAT WEEK: Answer for the job where you worked the second most hours
$\qquad$
$\qquad$
$\qquad$

A51. Using the JOB CODES LIST (pages 20-21) choose the code that BEST describes the work you were doing on your second job during the week of April 15.

CODE


NOTE - Job codes range from 010 to 500

A52. To what extent was your work on this second job related to your (first U.S.) doctoral degree? Was it . . .

## Mark ( $x$ ) ONLY one

Closely relatedSomewhat relatedNot relatedThe next few questions ask about your work for pay (or profit) in 1996.

A53. Turning to 1996, including paid vacation and paid sick leave, how many weeks did you work in 19967- MARK $(x)$ THIS BOX IF NONE AND SKIP TO A56

## NUMBER OF WEEKS WORKED

A54. During the weaks you worked in 1996, how many hours a week did you usually work?

NUMBER OF HOURS WORKED

A55. Counting all jobs held in 1996, what was your TOTAL EARNED income for 1996, BEFORE deductions? include all wages, salaries, bonuses, overtime, commissions, consulting fees, net income from businesses, summertime teaching or research, postdoctoral appointment, or other work associated with scholarships

TOTAL 1996
EARNEDINCOME \$ .00- MARK ( X ) THIS BOX IF YOU HAD NO EARNED INCOME IN 1996

A56. What was your total HOUSEHOLD income before deductions for $1996 ?$ In addition to any income listed in A55, please include income from such sources as dividends, interest, social security, pensions, and income earned from your spouse.

TOTAL 1996
HOUSEHOLD INCOME \$ $\qquad$ .00- MARK (X) THIS BOX IF YOU HAD NO HOUSEHOLD INCOME IN 1996

The next few questions will help us better understand employment changes over time.

B1. Were you working for pay (or profit) during BOTH of these time periods-the week of April 15, 1995 AND the week of April 15, 1997 ?
if you were a student: Do not count financial aid awards with no work requirement


B2. (IF YES) During these two time periods-the week of April 15, 1995, and the week of April 15, 1997-were you working for . .

Mark ( $X$ ONLY oneSame employer AND same job = SKIP to C1Same employer BUT different jobDifferent employer BUT same jobDifferent employer AND different job

B3. (IF DIFFERENT) Why did you change your employer or your job?

Mark ( $X$ ) Yes or No for each

1. Pay, promotion opportunities $\qquad$
$\qquad$
2. Working conditions (e.g., hours, equipment, working environment) $\qquad$2
3. Job locaṭion2 -
4. Change in career or professional interests $\qquad$$2 \square$
5. Famlly-related reasons (e.g., children, spouse's job moved) $\qquad$${ }_{2} \square$
6. School-related reasons (e.g., retumed to school, completed a degree) $\qquad$2
7. Laid off or job terminated (includes company closings, mergers, buyouts or grant or contract ended) $\qquad$2 $\square$
8. Retired $\square$ $\square$
9. Other reason - Specify
$\qquad$

PART C - Other Work and Career Related

C1. How concerned are you that you might lose your job in the next 12 months?

## Mark ( $X$ ) ONLY one

Very concerned$2 \square$
Somewhat concernedNot very concerned

C2. How concemed are you that someone in your household, other than you, might lose their job in the next $\mathbf{1 2}$ months?- MARK (X) THIS BOX IF NO OTHER WORKING ADULT IN HOUSEHOLD AND GO TO C3

## Mark (X) ONLY one

Very concernedSomewhat concernedNot very concemedC3. Have you ever been offered a buy-out or what is often called "early retirement"-that is, a cash settlement to induce employees to voluntarily give up a job?

Mark ( $X$ ) ONLY oneYes, and accepted the offerYes, but did not accept the offerNo

C4. Since completing your (first) bachelor's degree, have you ever lost or left a job because your employer closed, moved or underwent restructuring, downsizing or major layoffs?

MARK 'VEs": If a partnership or self-employed business closed for economic reasons
 Yes No - SKIP to C9

C5. (IF LOST OR LEFT JOB) For which of the following reasons did you lose or leave that job (or jobs)?

Mark (X) Yes or No for each

1. Your self-operated business ended
$2 \square$
2. Your company or the facility or agency where you worked closed down $2 \square$
3. Your company or the facility or agency where you worked moved to another location${ }_{2} \square$
4. The work or services of your company or the facility or agency where you worked was reorganized or restructured $\qquad$${ }_{2} \square$
5. Your company or the facility or agency where you worked was taken over by another organization$2 \square$
6. Your company or the facility or agency where you worked had insufficient business, revenue or work $\qquad$${ }_{2} \square$
7. Some other reason - Specify $\longrightarrow$
$\qquad$

C6. In what year did you lose or leave that job-if more than one, please answer for the most recent occurrence.

19

C7. From the time you actively began your search, about how many months did it take to find a new job? Answer for most recent occurrence

- $\square$ - MARK ( $X$ ) THIS BOX IF YOU HAVE NOT FOUND ANOTHER JOB AND SKIP TO CS

NUMBER OF MONTHS $\qquad$
(Enter ${ }^{*} 0^{\prime \prime}$ if less than one month)

C8. Compared to the job you had, did your new job offer you significantly more, about the same, or significantly less in terms of:

a. Salary $\qquad$

b. Level of responsibility .. $\square$
c. Utilizing your knowledge or skills $\qquad$ , $\square$
${ }_{2} \square \quad{ }_{3} \square$

C9. If you had the chance to do it over again, knowing what you do now, how likely is it that you would choose the same field of study for your highest degree?Very likely
${ }_{2}$Somewhat likelyNot at all likely

C10. During the past year, did you attend any professional society or association meetings or professional conferences? Include regional, national, or infernational meetingsYesNo

C11. To how many national or international professional societies or assoclations do you currently belong?

Number


C12. During the past year, did you attend any WORK-RELATED workshops, seminars, or other work-related training activities? Do NOT include college courses - these will be discussed in PART D, page 13

Do NOT include professional meetings unless you attended a special training session conducted at the meeting/conference
$1 \square$YesNo - SKIP to D1, page 13

C13. (IF YES) During the past year, in which of the following areas did you attend work-related workshops, seminars, or other work-related training activities? In those areas marked "yes," please answer the follow-up questions.

Types of Work-Related Training<br>For Any Training Marked 'Yes": Answer A-C

| A | B <br> Did you pay <br> Record Total | C <br> for any of <br> Number of Days <br> this triaining <br> in Training |
| :---: | :---: | :---: | | Nourser of |
| :---: |
| Training Days |

1. Management or supervisor training.

2. Training in your occupational field.
d. . . .
3. General professional training (e.g., public speaking, business writing).
4. Other work-related training - Specify?

C14. For which of the following reasons did you attend training activities during the past year? Mark ( $X$ ) Yes or No for each

1. To facilitate a change in your occupational field
2. To gain FURTHER skills or knowledge in your occupational field $\qquad$
3. For Iicensure/certification $\qquad$
4. To increase opportunities for promotion/advancement/higher salary $\qquad$
5. To learn skills or knowiedge needed for a recently acquired position

6: Required or expected by employer $\qquad$
7. Other - Specity

C15. What was your most important reason for attending training activities? Enter number of appropriate reason from C14 above

## PART D-Background Information

D1. Between April 1995 and April 1997, did you take any college or university courses or enroll in a college or university for other reasons, such as completing a Master's or PhD?
, $\square$
YesNo - SKIP to E1, page 14

D2. (IF YES) In which college or university department were you primarily taking classes or doing research, etc. (e.g., English, chemistry)?
dEPARTMENT $\qquad$

D3. During that time, \&oward what degree or certificate, if any, were you (or are you) working?
-- MARK (X) THIS BOX IF NO SPECIFIC DEGREE OR CERTIFICATE AND SKIP TO DT, PAGE 14.

If More than one applies: Mark the highest level
Mark ( $X$ ) ONLY one
$1 \square$

## Bachelor's degree

$2 \square$
Post baccalaureate certificate
${ }_{3} \square$
Master's degree (including MBA)
${ }_{4} \square$
Post master's certificateDoctorate (e.g., Ph.D., D.S.C, D.Sc., Ed.D.)Other professional degree (e.g., JD, LLB,
ThD, MD, DDS) - SpecifyOther-Specify

D4. Between April 1995 and April 1997, did you complete a degree or certificate?

1 YesNo $\rightarrow$ SKIP to D7, page 14

D4a. (IF YES) What degree or certificate did you receive? From D3 enter the number of appropriate TYPE OF DEGREEICERTIFICATE received

TYPE OF DEGREE CERTIFICATE FROM D3 $\qquad$

D5. In what month and year was this degree or certificate awarded?

IF YOU COMPLETED MORE THAN ONE: Enter the date for the highest degree or certificate awarded


D6. From which academic institution did you receive this degree or certificate?

School name

City/Town

State/Foreign Country $\qquad$

D7. What was your primary field of study during that time?

PRIMARY FIELD OF STUDY
$\qquad$
$\qquad$
$\qquad$

D8. For which of the following reasons were you taking classes or enrolled between April 1995 and April $1997 ?$

Mark ( $X$ ) Yes or No for each

1. To gain further education before beginning a career $\qquad$
$\qquad$ $2 \square$
2. To prepare for graduate school $\qquad$
$\square$ $2 \square$
3. To change your academic or occupational field $\qquad$ $1 \square$ $2 \square$
4. To gain FURTHER skills or knowledge in your academic or occupational field $\qquad$ $1 \square$ $2 \square$
5. For licensure/certification $\qquad$ $1 \square$ . $2 \square$
6. To increase opportunities for promotion, advancement, or higher salary $\qquad$$2 \square$
7. Required or expected by employer $\qquad$ $1 \square$ $2 \square$
8. For leisure/personal interest $1 \square$ ${ }_{2} \square$
9. Other-Specify 2
$\qquad$

D9. Were ANY of your school-related costs for taking college or university courses during this time paid for by an employer?YesNo

PART E-Recent Doctorate Recipients

E1. Did you receive your (first U.S.) doctoral degpee any time between June 1990 and June 1996?YesNo $\rightarrow$ SKIP to F1, page 18

The next questions are about the initial career experiences of recent doctorate recipients. The degree we are referring to is the first U.S. doctorate.

E2. Thinking back to when you began your doctoral program, what kind of work did you want to do after completing your doctorate?

Mark (X) Yes or No for each

1. Teaching $\qquad$ YES NO
2. Research $\qquad$
$\square$ $\square$
3. Management/administration$2 \square$
4. Professional practice $\qquad$$2 \square$
5. Other-Specify?
$\qquad$$2 \square$

E3. When you began your doctoral program, in what type of employment setting did you MOST want to work upon completing your doctorate?

Mark ( $X$ ) ONLY one
1 College or universityBusiness or industryGovernmentNonprofit organizationSelf-employedElementary or secondary schoolOther-Specity?

E4. How did you think a doctoral degree would help your career? Did you think it would help you. . .

## Mark ( $X$ ) ONLY one

Begin your first career$2 \square$
Further a career you had already started
${ }_{3}$Change careers(Help) in ways not related to your career

E5. At the time you completed your doctorate, among those with your training and experience, would you say the ...
a. Job market for posidocs was . . .


Excellent Good Fair

Very poor
Don't know or not applicable
b. Job market for positions other than posfdocs was...ExcellentGoodFairVery poorDon't know or not applicable

E6. Between completing your doctorate and the week of April 15, have you held or accepted what you consider to be a "career path" job?

A "career path" job is a job that will help you in your future career plans or a job in the field in which you want to make your careerYes, held a career path job - SKIP to E8Yes, accepted but not begun $\rightarrow$ SKIP to E9 $\square^{3} \square$ No, neither held nor accepted

E7. Since completing your doctorate and the week of April 15, have you sought a "career path" job?Yes - SKIP to E9No - SKIP to E18, page 17

E8. When did you begin working on that job? Was it ...


After completing your doctorate

E9. To what extent, if at all, has or was your search for a career path job limited by ...

Mark (X) ONLY one for each item

|  |  | Not |
| :---: | :---: | :---: |
| A |  | Much |
| Great | Some |  |
| Deal | what | or Not |
| At All | Appli- |  |
| cable |  |  |

1. Family responsibilities .. , $\square$
2. Spouse's
career or employment
3. Debt burden
from undergraduate or graduate degrees
4. Desire to not relocate or move to place of job ... ,
5. Suitable job not available
6. Other-Specify $\_,$ $\square$
$\qquad$
$\qquad$

E10. Which of the following resources did you use for seeking or finding your first career path job after receiving your doctorate?

If you have not yet obtained. a career path job, please indicate the sources used in your job search

| Mark (X) Yes or No for each | YES | NO $\downarrow$ |
| :---: | :---: | :---: |
| 1. Faculty or advisors | , $\square$ | $2 \square$ |
| 2. Professional recruiters such as "head hunters" |  | $2 \square$ |
| 3. College or department placement office. |  | ${ }_{2} \square$ |
| 4. Professional meetings | $\square$ | $2 \square$ |
| 5. Electronic postings | $\square$ | $2 \square$ |
| 6. Newspapers |  | $2 \square$ |
| 7. Professional journals |  | ${ }_{2} \square$ |
| 8. Informal channels through colleagues or friends |  | $2 \square$ |
| 9. Direct contacts you initiated with company (e.g., sent unsolicited vita) |  | $2 \square$ |
| 10. Other-Specity 2 |  |  |

E11. Which TWO resources in E10 were most responsible for finding your first career path job? Enter number of appropriate resource from E10 above- MARK (X) THIS BOX IF YOU HAVE NOT HELD OR ACCEPTED A CAREER PATH JOB SINCE RECEMNG YOUR DOCTORATE AND SKIP TO E18, PAGE 17

1. _ MOST important resource
2. _ SECOND MOST important resource (Enter "0" if no second resource)

E12. How many months elapsed between the time you completed your doctorate and the time you accepted your first career path job?

IF YOUR CAREER PATH JOB BEGAN WHILE YOU WERE COMPLETING OR WITHIN ONE MONTH OF RECENING YOUR DOCTORAL DEGREE: Enter "0"

NUMEER OF MONTHS $\qquad$ $\rightarrow$ SKIP to E14

E13. How did completing your doctoral degree affect the following aspects of that job you held?

Mark $(X)$ ONLY one for each item

|  | Not <br> A |  |
| :---: | :---: | :---: |
| Great | Some- | Mur Not <br> or |
| Deal | what | At All |

1. Salary level $\qquad$
2. Level of responsibility $\qquad$
3. Job security $\qquad$
$\square$
4. Degree of interesting or rewarding work $\qquad$
5. Degree of technically demanding work $\qquad$
6. Management activities expected $\qquad$
$\square$
7. Other-Specify $\geq$

E14. Were you still holding this first career path job during the week of April 15, 1997 ?


E15. Thinking about the relationship between your work and your education, to what extent was your work on your first career path job related to your doctoral degree field?

Mark ( $X$ ) ONLY one

$2 \square$Closely related $\longrightarrow$ SKIP to E18
Somewhat related
$-3 \square$ Not related

E16. (IF.NOT RELATED) Did any of these factors influence your decision to work in an area outside your doctoral degree field?

Mark (X) Yes or No for each

1. Pay or promotion opportunities

|  | YES |
| :---: | :---: |
| $\downarrow$ | NO |
| $\downarrow$ | $\downarrow$ |
| $\square$ |  |
|  |  |

2. Working conditions (e.g., hours, equipment, working environment)
3. Job location. ,
4. Change in career or professional interests $\qquad$
5. Family-related reasons (e.g., children, spouse's job moved) $\square$
6. Job in doctoral field not available${ }_{2} \square$
7. Other reasons - Specify
$\qquad$

E17. Which TWO factors in E16 represent your MOST important reasons for working in an area outside your doctoral degree field? Enter number of appropriate factor from E16 above

1. $\qquad$ MOST important reason
2. 

SECOND MOST important reason (Enter " 0 " if no second reason)

E18. In terms of preparing you for a career, how adequate was your doctoral program or training in each of the following areas?

Mark (X) ONLY one for each Some-

| Very | what | Not | Not |
| :---: | :---: | :---: | :---: |
| Ade- | Ade- | Ade- | Appli- |
| quate | quate | quate | cable |

1. General problem solving skills
2. Subject matter knowledge $\qquad$
3. Oral communication skills
4. Teaching skills $\qquad$
5. Collaboration and team work skills
6. Quantitative skills $\qquad$
7. Writing skills $\qquad$
8. Computer skills $\qquad$
$\square$
${ }_{2} \square$
9. Research integrity/ ethics. . . . . . . . . . . . .
10. Establishing contacts with colleagues in field $\qquad$
11. Management or administrative skills $\qquad$

E19. In which TWO areas in E18 would you have llked to have had more training or emphasis in your docioral program?
$\square$ - MARK (X) THIS BOXIF NONE (NO ADDITIONAL TRAMING OR EMPHASIS DESIRED)

1. $\qquad$ FIRST area
2. $\qquad$ SECOND area
(Enter "0" if no second area)
E20. Overall, how satisfied are you with the doctoral program you completed?

Mark ( $X$ ) ONLY oneVery satisfied
Somewhat satisfied Somewhat dissatisfied
Very dissatisfied

## PART F - Demographic Information

Fi. As of the week of April 15 were you ...
Mark (X) ONLY one


F2. (IF MARRIED) During the week of April 15, was your spouse working for pay (or profit) at a full-time or part-time job?


F3. (IF YES) Did your spouse's duties on this job require the technical expertise of a bachelor's degree or higher in ...

Mark (X) Yes or No for each

1. Engineering, computer science, math or the natural sciences,

2. The social sciences, $\qquad$
3. Some other field (e.g., health or business) - Specify 2
$\qquad$ $1 \square$ $2 \square$

F4. During the week of April 15, did you have any children living with you as part of your family?

Only count children who lived with you at least 50 percent of the timeYes $\boldsymbol{\rightarrow}$ GO to F5No $\rightarrow$ SKIP to F6

F5. (IF YES) How many of these children living with you as part of your family were...

If NO Children in a category: Enter " 0 "
Number of
Children

1. Under age 2 : ..........
2. Aged $2-5$ $\qquad$
$\qquad$
3. Aged 6-11 $\qquad$
$\qquad$
4. Aged 12-17 $\qquad$
5. Aged 18 or older $\qquad$

F6. During the week of April 15, 1997, were you living in the United States or one of its territories, or were you living in another country?United States or one of its territoriesAnother country

F7. As of the week of April 15, 1997 were you a ...
Mark ( $X$ ) ONLY one
U.S. CitizenNative Born-
Naturalized $] \rightarrow$
SKIP to Fs

Non-U,S, Citizen


With a Permanent U.S. Resident Visa
With a Temporary U.S. Resident Visa
Living outside the United States

F8. (IF NON-U.S. CITIZEN) Of which country are you a citizen?

COUNTRY $\qquad$

F9. What is your birihdate?


The next question is designed to help us better understand the career paths of individuals with different physical abilities.

F10. What is the USUAL degree of difficulty you have with...

1. SEEING words or letters in ordinary newsprint (with glasses/contact lenses if you usually wear them) $\qquad$ ,

|  | MARK ( $X$ ) ONE FOR EACH |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| None $\downarrow$ | Slight $\downarrow$ | Moderate | Severe $\downarrow$ | Unable to Do |
| $\square$ | $2 \square$ | ${ }_{3} \square$ | , $\square$ | $\square$ |

2. HEARING what is normally said in conversation with another person (with hearing aid, if you usually wear one) $\qquad$
3. WALKING without human or mechanical assistance or using stairs
4. LIFTING or carrying something as heavy as 10 pounds, such as a bag of groceries $\qquad$ ,
$2 \square$F11. © - MARK ( X ) THIS BOX IF YOU ANSWERED "NONE" TO ALL ACTIVITIES IN F10 AND SKIP TO F13

F12. What is the earliest age at which you FIRST began experiencing ANY difficulties in ANY of these areas? AGE $\mid$ OR OD SINCE BIRTH

F13. In case we need to clarify some of the information you have provided, please list a phone number (and an e-mail address if applicable) where you can be reached.


F14. Since we are interested in how education and employment change over time, we may be recontacting you in 1999. To help us contact you, please provide the name, address, and telephone number of two people who are likely to know where you can be reached. DO NOT INCLUDE SOMEONE WHO LNES IN YOUR HOUSEHOLD. As with all the information provided in this questionnaire, complete confidentiality will be provided. These people will only be contacted if we have trouble contacting you in 1999.


F15. PLEASE TURN TO THE BACK COVER FOR THE LAST QUESTION (F16).

## JOB CODES LIST

This list is ordered ALPHABETICALLY. The titles in bold type are broad job categories. To make sure you have found the BEST code, please review ALL broad categories before making your choice. If you cannot find the code that BEST describes your job, use the "OTHER" code under the most appropriate broad category in bold print. If none of the codes fit your job, use Code 500.

010 Artists, Broadcasters, Editors, Entertainers, Public
Relations Specialists, Writers

## Biological/Life Scientists

021 Agricultural and food scientists
022 Biochemists and biophysicists
023 Blological sclentists (e.g., botanists, ecologists, zoologists)
024 Forestry and conservation scientists
025 Medical scientists (excluding practitioners)
026 Technologists \& technicians in the biologicallife sciences
027 OTHER biologicalaife scientists

Clerical/Administrative Support
031 Accounting clerks, bookkeepers
032 Secretaries, receptionists, typists
033 OTHER administrative (e.g., record clerks, telephone operators)

040 Clergy \& Other Religious Workers

Computer Occupations (Also see 173)
... Computer engineers (See 087, 088 under Engineering)
051 Computer programmers (business, scientific, process control)
052 Computer system analysts
053 Computer scientists, except system analysts
054 information systems sclentists or analysts
055 OTHER computer, information science occupations
-.. Consultants (Select the code that comes closest to your usual area of consulting)

070 Counselors, Educational \& Vocational (Also see 236)

Engineers, Architects, Surveyors
081 Architects
-." Engineers (Also see 100-103)
082 Aeronautical, aerospace, astronautical engineer
083 Agricultural engineer
084 Bioengineering $\&$ biomedical engineer
085 Chemical engineer
086 Civil, including architectural \& santary engineer
-.. Engineers (continued)
087 Computer engineer - hardware
088 Computer engineer - software
089 Electrical, etectronic engineer
090 Environmental engineer
091 industral engineer
092 Marine engineer or naval architect engineer
093 Materials or metallurgical engineer
094 Mechanical engineer
095 Mining or geological engineer
096 Nuclear engineer
097 Petroleum engineer
098 Sales engineer
099 Other engineer
-.- Engineering Technologists and Technicians
100 Electrical, electronic, industrial, mechanical
101 Drafting occupations, including computer drafing
102 Surveying and mapping
103 OTHER engineering technologists and technicians
104 Surveyors

110 Farmers, Foresters \& Fishermen

Health Occupations
111 Diagnosing/Treating Practitioners (e.g., dentists, optometrists, physicians, psychiatrists, podiatrists, surgeons, veterinarians)
112 Registered nurses, pharmacists, dieticians, therapists, physician assistants
236 Psychologists, inctuding clinical
113 Heath Technologists \& Technicians
(e.g., dental hygienists, health record technologisttechnicians, licensed practical nurses, medical or laboratory lechnicians, radiologic technologiststechnicians)
114 OTHER heath occupations

120 Lawyers, Judges

130 Librarians, Archivists, Curators

Managers, Executives, Administrators
(Also see 151-153)
141 Top and mid-level managers, executives, administrators (people who manage other managers)
... Allother managers, including the seff-employed - Select the code that comes ctosest to the field you manage

## JOB CODES LIST - Continued

Management-Related Occupations (Also see 141)
151 Accountants, auditors, and other financial specialists
152 Personnel, training, and labor relations specialists
153 OTHER management related occupations

## Mathematical Scientists

171 Actuaries
172 Mathematicians
173 Operations research analysts, modeling
174 Statisticians
175 Technologists and technicians in the mathematical sciences
176 OTHER mathematical scientists

## Physical Scientists

191 Astronomers
192 Atmospheric and space scientists
193 Chemists, except biochemists
194 Geologists, including earth scientists
195 Oceanographers
196 Physicists
197 Technologists and technicians in the physical sciences
198 OTHER physical scientists
... Research Associates/Assistants
(Select the code that comes closest to your field)

## Sales and Marketing

200 Insurance, securities, real estate, \& business services
201 Sales Occupations - Commodities Except Retail (e.g., industrial machinery/equipment/supplies, medical and dental equip/supplies)
202 Sales Occupations - Retail
(e.g., furnishings, clothing, motor vehicles, cosmetics)

203 OTHER marketing and sales occupations

Service Occupations, Except Health (Also see 111-114)
221 Food Preparation and Service (e.g., cooks, waitresses. bartenders)
222 Protective services (e.g., fire fighters, police, guards)
223 OTHER service occupations, except heath

## Social Scientists

231 Anthropologists
232 Economists
233 Historians, science and technology
234 Historians, except science and technology
235 Political scientists
236 Psychologists, including clinical (Also see 070)
237 Sociologists
238 OTHER social scientist
240 Social Workers

| Teachers/Professors |
| :--- |
| 251 Pre-Kindergarten and kindergarten |
| 252 Elementary |
| 253 Secondary - computer, math, or sciences |
| 254 Secondary - social sciences |
| 255 Secondary - other subjects |
| 256 Special education - primary and secondary |
| 257 OTHER precolleglate area |
| Postsecondary |
| 271 Agriculture |
| 272 Art, Drama, and Music |
| 273 Biological Sciences |
| 274 Business Commerce and Marketing |
| 275 Chemistry |
| 276 Computer Science |
| 277 Earth, Environmental, and Marine Science |
| 278 Economics |
| 279 Education |
| 280 Engineering |
| 281 English |
| 282 . Foreign Language |
| 283 History. |
| 284 Home Economics |
| 285 Law |
| 286 Mathematical Sciences |
| 287 Medical Science |
| 288 PhysIcal Education |
| 289 Physics |
| 290 Political Science |
| 291 Psychology |
| 292 Social Work |
| 293 Sociology |
| 294 Theology |
| 295 Trade and industrial |
| 296 OTHER health specialties |
| 297 OTHER natural sciences |
| 298 OTHER social sciences |
| 299 OTHER Postsecondary |
|  |

## Other Professions

401 Construction trades, miners $\&$ well drillers
402 Mechanics and repairers
403 Precision/production occupations
(e.g., metal workers, woodworkers, butchers, bakers, printing
occupations, tailors, shoemakers, photographic process)
404 Operators and related occupations
(e.g., machine set-up, machine operators and tenders, fabricators, assemblers)
405 Transportation/material moving occupations

500 OTHER OCCUPATIONS (Not Listed)

BESTCOPYAVAILABLE

F16. Is the name and address information on the label the best one for us to use for any future mailings?Yes
${ }_{2}$No - Please make name and address changes as needed below. Please print clearly.

## THANK YOU FOR COMPLETING THE QUESTIONNAIRE

Please return the completed form in the envelope provided. If you lose the envelope and want another, call 1-800-327-7508. Our address is:

Survey of Doctorate Recipients
National Opinion Research Center at the University of Chicago
1525 East 55th Street
Chicago, IL 60615


To order SRS publications, fill out order form, cut on dotted line, fold in half, tape, and drop in the mail. No postage is necessary. Form can also be sent via fax, at 703-306-0510.

# BUSINESS REPLY CARD <br> FIRST CLASS <br> PERMIT NO. 12806 <br> ARLINGTON, VA 



National Science Foundation
Division of Science Resources Studies
Publications Unit
4201 Wilson Blvd., Suite 965
Arlington, VA 22203-9966


Fold here

Please tape here (do not staple)

## NATIONAL SCIENCE FOUNDATION

ARLINGTON, VA 22230

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $\$ 300$

RETURN THIS COVER SHEET TO ROOM P35 IF YOU DO NOT WISH TO RECEIVE THIS MATERIAL $\square$, OR IF CHANGE OF ADDRESS IS NEEDED $\square$, INDICATE CHANGE INCLUDING ZIP CODE ON THE LABEL (DO NOT REMOVE LABEL).
U.S. Department of Education

Office of Educational Research and Improvement (OERI)

## NOTICE

## REPRODUCTION BASIS

$\square$This document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.



[^0]:    SRS data are available through the World Wide Web (http://www.nsf.gov/sbe/srs/stats.htm). For more information about obtaining reports, contact pubs@nsf.gov or call (301) 947-2722. For NSF's Telephonic Device for the Deaf, dial (703) 306-0090.

[^1]:    ${ }^{1}$ The Doctorate Data Project consists of the Survey of Doctorate Recipients, a biennial survey conducted since 1973, and the Survey of Earned Doctorates, an annual census of research doctorates awarded since 1920, which forms the Doctorate Records File.

[^2]:    See explanatory information and SOURCE at end of table.

[^3]:    *If the respondent was unemployed, occupation of last job was reported.
    NOTE: $\quad$ Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^4]:    See explanatory information and SOURCE at end of table.

[^5]:    See explanatory information and SOURCE at end of table.

[^6]:    NOTE: $\quad$ Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.

[^7]:    See explanatory information and SOURCE at end of table.

[^8]:    NOTE: $\quad$ Numbers are rounded to nearest ten.

[^9]:    See explanatory information and SOURCE at end of table.

[^10]:    NOTE: $\quad$ Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.
    Since the SDR sample design does not include geography, the reliability of estimates in some states may be poor due to a small sample size.

[^11]:    See explanatory information and SOURCE at end of table.

[^12]:    See explanatory information and SOURCE at end of table.

[^13]:    NOTE: $\quad$ Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.
    'Other race included with 'white'.
    KEY: - $S=$ Suppressed due to too few cases (fewer than 50 weighted cases).
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^14]:    See explanatory information and SOURCE at end of table.

[^15]:    See explanatory information and SOURCE at end of table.

[^16]:    See explanatory information and SOURCE at end of table.

[^17]:    See explanatory information and SOURCE at end of table.

[^18]:    Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.

[^19]:    Numbers are rounded to nearest ten.
    Details may not add to total because of rounding.
    $\mathrm{S}=$ Suppressed due to too few cases (fewer than 50 weighted cases).

    NOTE:
    National Science Foundation/Division of Science Resources Studies,

[^20]:    See explanatory information and SOURCE at end of table.

[^21]:    NOTE: $\quad$ Numbers are rounded to nearest hundred.
    Median salaries were computed for full-time employed individuals only.
    'Other' race included with 'white'.
    KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^22]:    NOTE: $\quad$ Numbers are rounded to nearest hundred
    Median salaries were computed for full-time employed individuals only.
    KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^23]:    NOTE: $\quad$ Numbers are rounded to nearest hundred. Median salaries were computed for full-time employed individuals only.
    KEY: $\quad S=$ Suppressed due to too few cases (fewer than 200 weighted cases).
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^24]:    See explanatory information and SOURCE at end of table.

[^25]:    See explanatory information and SOURCE at end of table.

[^26]:    See explanatory information and SOURCE at end of table.

[^27]:    See explanatory information and SOURCE at end of table.

[^28]:    NOTE: $\quad$ Numbers are rounded to nearest hundred.
    Median salaries were computed for fult-time employed individuals only.
    'Other race included with 'white'.
    KEY: $\quad$ S=Suppressed due to too few cases (fewer than 200 weighted cases).

[^29]:    See explanatory information and SOURCE at end of table.

[^30]:    Numbers are rounded to nearest hundred.
    Numbers are rounded to nearest hundred.
    Median salaries were computed for full-time employed individuals only.
    'Other' race included with 'white'.
    $\mathrm{S}=$ Suppressed due to too few cases (fewer than 200 weighted cases).
    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

[^31]:    See explanatory information and SOURCE at end of table.

[^32]:    See explanatory information and SOURCE at end of table.

[^33]:    'The discussions presented here are partly from The Methodological Report of the 1997 Survey of Doctorate Recipients (NORC, March 1999).
    ${ }^{2}$ In 1997, the National Institutes of Health co-sponsored the SDR with NSF. In previous rounds, the Department of Energy and the National Endowment for the Humanities co-sponsored the survey. Until 1995, the SDR was conducted by the National Research Council (NRC).
    ${ }^{3}$ See appendix B for a list of the specialties included in the 1997 SDR sampling frame.

[^34]:    ${ }^{4}$ The generalized error estimates in this report were based on a set of assumptions that did not appear to hold in the case of some small subpopulations. In such cases, the parameters listed for a higher-level field within a demographic group or a higher-level demographic group within a field were considered a useful substitute as a generalized error estimate.

[^35]:    SOURCE: National Science Foundation/Division of Science Resources Studies, 1997 Survey of Doctorate Recipients.

